These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25773466)

  • 1. A two layers monodomain model of cardiac electrophysiology of the atria.
    Coudière Y; Henry J; Labarthe S
    J Math Biol; 2015 Dec; 71(6-7):1607-41. PubMed ID: 25773466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bilayer model of human atria: mathematical background, construction, and assessment.
    Labarthe S; Bayer J; Coudière Y; Henry J; Cochet H; Jaïs P; Vigmond E
    Europace; 2014 Nov; 16 Suppl 4():iv21-iv29. PubMed ID: 25362166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potential propagation and block in a model of atrial tissue with myocyte-fibroblast coupling.
    Mortensen P; Gao H; Smith G; Simitev RD
    Math Med Biol; 2021 Mar; 38(1):106-131. PubMed ID: 33412587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology.
    Whiteley JP
    Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.
    Bruce D; Pathmanathan P; Whiteley JP
    Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer model of human atria with reasonable computation load and realistic anatomical properties.
    Blanc O; Virag N; Vesin JM; Kappenberger L
    IEEE Trans Biomed Eng; 2001 Nov; 48(11):1229-37. PubMed ID: 11686622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Study of the Electrophysiological Substrate in Patients Suffering From Atrial Fibrillation.
    Pagani S; Dede' L; Frontera A; Salvador M; Limite LR; Manzoni A; Lipartiti F; Tsitsinakis G; Hadjis A; Della Bella P; Quarteroni A
    Front Physiol; 2021; 12():673612. PubMed ID: 34305637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology.
    Bowler LA; Gavaghan DJ; Mirams GR; Whiteley JP
    Bull Math Biol; 2019 Jan; 81(1):7-38. PubMed ID: 30291590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.
    Xia Y; Wang K; Zhang H
    Comput Math Methods Med; 2015; 2015():862735. PubMed ID: 26581957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and simulation of hypothermia effects on cardiac electrical dynamics.
    Belhamadia Y; Grenier J
    PLoS One; 2019; 14(5):e0216058. PubMed ID: 31050666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria.
    Seemann G; Höper C; Sachse FB; Dössel O; Holden AV; Zhang H
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1465-81. PubMed ID: 16766355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating inductances in tissue-scale models of cardiac electrophysiology.
    Rossi S; Griffith BE
    Chaos; 2017 Sep; 27(9):093926. PubMed ID: 28964127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2016 Oct; 280():71-86. PubMed ID: 27545966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation.
    Fernández MA; Zemzemi N
    Math Biosci; 2010 Jul; 226(1):58-75. PubMed ID: 20416327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPGPU accelerated cardiac arrhythmia simulations.
    Wang W; Huang HH; Kay M; Cavazos J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():724-7. PubMed ID: 22254412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: application to complex ventricular models.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1066-75. PubMed ID: 21292591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times.
    Wallman M; Smith NP; Rodriguez B
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1739-48. PubMed ID: 22491074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions.
    Schenone E; Collin A; Gerbeau JF
    Int J Numer Method Biomed Eng; 2016 May; 32(5):. PubMed ID: 26249327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On boundary stimulation and optimal boundary control of the bidomain equations.
    Chamakuri N; Kunisch K; Plank G
    Math Biosci; 2013 Oct; 245(2):206-15. PubMed ID: 23856647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.