These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25773466)

  • 21. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.
    Chamakuri N; Kunisch K; Plank G
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02742. PubMed ID: 26249168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global electrophysiological mapping of the atrium: computerized three-dimensional mapping system.
    Rodefeld MD; Branham BH; Schuessler RB; Hand DE; Gamache CM; Platt JW; Labarbera SP; Cox JL; Boineau JP
    Pacing Clin Electrophysiol; 1997 Sep; 20(9 Pt 1):2227-36. PubMed ID: 9309748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fully adaptive multiresolution algorithm for atrial arrhythmia simulation on anatomically realistic unstructured meshes.
    Cristoforetti A; Mase M; Ravelli F
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2585-93. PubMed ID: 23674407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The simplified Kirchhoff network model (SKNM): a cell-based reaction-diffusion model of excitable tissue.
    Jæger KH; Tveito A
    Sci Rep; 2023 Sep; 13(1):16434. PubMed ID: 37777588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of cardiac conduction in a cell-based computational model.
    Jæger KH; Edwards AG; McCulloch A; Tveito A
    PLoS Comput Biol; 2019 May; 15(5):e1007042. PubMed ID: 31150383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function.
    Skouibine K; Krassowska W
    Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method.
    Brocklehurst P; Adeniran I; Yang D; Sheng Y; Zhang H; Ye J
    Biomed Res Int; 2015; 2015():854953. PubMed ID: 26583141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Propagation Models and Forward Calculation Methods on Cellular, Tissue and Organ Scale Atrial Electrophysiology.
    Nagel C; Espinosa CB; Gillette K; Gsell MAF; Sanchez J; Plank G; Dossel O; Loewe A
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):511-522. PubMed ID: 35921339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia.
    Boyle PM; Zahid S; Trayanova NA
    Europace; 2016 Dec; 18(suppl 4):iv136-iv145. PubMed ID: 28011841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the optimal position and direction of a ubiquitous ECG using a multi-scale model of cardiac electrophysiology.
    Lim KM; Hong SB; Jeon JW; Gyung MS; Ko BH; Bae SK; Shin KS; Shim EB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():993-6. PubMed ID: 22254479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies.
    Hörmann JM; Bertoglio C; Nagler A; Pfaller MR; Bourier F; Hadamitzky M; Deisenhofer I; Wall WA
    Cardiovasc Eng Technol; 2017 Jun; 8(2):205-218. PubMed ID: 28512679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation.
    Heijman J; Erfanian Abdoust P; Voigt N; Nattel S; Dobrev D
    J Physiol; 2016 Feb; 594(3):537-53. PubMed ID: 26582329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic mapping of atrial fiber orientations for patient-specific modeling of cardiac electromechanics using image registration.
    Hoermann JM; Pfaller MR; Avena L; Bertoglio C; Wall WA
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3190. PubMed ID: 30829001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.
    Richter Y; Lind PG; Seemann G; Maass P
    J Theor Biol; 2017 Apr; 419():100-107. PubMed ID: 28192083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.