These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25773544)

  • 1. A high-throughput method for quantifying metabolically active yeast cells.
    Nandy SK; Knudsen PB; Rosenkjaer A; Lantz AE; Thykaer J; Workman M
    Yeast; 2015 Jun; 32(6):461-8. PubMed ID: 25773544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT): measurement of CFU in about 200 s.
    Bapat P; Nandy SK; Wangikar P; Venkatesh KV
    J Microbiol Methods; 2006 Apr; 65(1):107-16. PubMed ID: 16040143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microplate-based method for real-time monitoring of Saccharomyces cerevisiae viability.
    Ye YR; Ye ML; Li LL; Lin Y
    Anal Biochem; 2010 Oct; 405(1):144-6. PubMed ID: 20494644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of carbon plasma-coated multiwell plates for high-throughput mass spectrometric analysis of highly lipophilic fermentation products.
    Heinig U; Scholz S; Dahm P; Grabowy U; Jennewein S
    Anal Biochem; 2010 Aug; 403(1-2):108-13. PubMed ID: 20382101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Growth of Arrayed Fluorescently Tagged Saccharomyces cerevisiae Strains for Live-Cell High-Throughput Microscopy Screens.
    Cox MJ; Chong YT; Boone C; Andrews B
    Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.prot088799. PubMed ID: 27037071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.
    Rezaei MN; Dornez E; Jacobs P; Parsi A; Verstrepen KJ; Courtin CM
    Food Microbiol; 2014 May; 39():108-15. PubMed ID: 24387860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocols and programs for high-throughput growth and aging phenotyping in yeast.
    Jung PP; Christian N; Kay DP; Skupin A; Linster CL
    PLoS One; 2015; 10(3):e0119807. PubMed ID: 25822370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S; Pérez-Ortín JE
    Yeast; 2000 Jan; 16(2):139-48. PubMed ID: 10641036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ high throughput method for H(2)S detection during micro-scale wine fermentation.
    Winter G; Curtin C
    J Microbiol Methods; 2012 Oct; 91(1):165-70. PubMed ID: 22981795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae.
    Ouerdane L; Mester Z
    J Agric Food Chem; 2008 Dec; 56(24):11792-9. PubMed ID: 19035646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barcode technology in yeast: application to pharmacogenomics.
    Delneri D
    FEMS Yeast Res; 2010 Dec; 10(8):1083-9. PubMed ID: 20846145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae.
    Lewis JG; Northcott CJ; Learmonth RP; Attfield PV; Watson K
    J Gen Microbiol; 1993 Apr; 139(4):835-9. PubMed ID: 8515239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [ON ELECTROMETRICALLY AND COLORIMETRICALLY DETERMINED REDOX POTENTIALS OF FERMENTING YEAST SUSPENSIONS DURING POTENTIAL DRIFT. EXPERIMENTS WITH INDIGO CARMINE AND METHYLENE BLUE].
    LEMAN A
    Arch Mikrobiol; 1965 Apr; 50():357-67. PubMed ID: 14296684
    [No Abstract]   [Full Text] [Related]  

  • 15. Two low complexity ultra-high throughput methods to identify diverse chemically bioactive molecules using Saccharomyces cerevisiae.
    Petrovic K; Pfeifer M; Parker CN; Schuierer S; Tallarico J; Hoepfner D; Movva NR; Scheel G; Helliwell SB
    Microbiol Res; 2017 Jun; 199():10-18. PubMed ID: 28454705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Microscopy-Based Screening in Saccharomyces cerevisiae.
    Styles EB; Friesen H; Boone C; Andrews BJ
    Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.top087593. PubMed ID: 27037080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple colony-formation assay in liquid medium, termed 'tadpoling', provides a sensitive measure of Saccharomyces cerevisiae culture viability.
    Welch AZ; Koshland DE
    Yeast; 2013 Dec; 30(12):501-9. PubMed ID: 24185677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.
    Yamaoka C; Kurita O; Kubo T
    Microbiol Res; 2014 Dec; 169(12):907-14. PubMed ID: 24932883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of CFU for individual microorganisms in mixed cultures with a known ratio using MBRT.
    Nandy SK; Venkatesh K
    AMB Express; 2014; 4():38. PubMed ID: 24949271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.