These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25773648)

  • 1. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases.
    Boles MA; Talapin DV
    J Am Chem Soc; 2015 Apr; 137(13):4494-502. PubMed ID: 25773648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection.
    Coropceanu I; Boles MA; Talapin DV
    J Am Chem Soc; 2019 Apr; 141(14):5728-5740. PubMed ID: 30868880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers.
    Dong A; Ye X; Chen J; Murray CB
    Nano Lett; 2011 Apr; 11(4):1804-9. PubMed ID: 21413781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices.
    Jishkariani D; Elbert KC; Wu Y; Lee JD; Hermes M; Wang D; van Blaaderen A; Murray CB
    ACS Nano; 2019 May; 13(5):5712-5719. PubMed ID: 31050884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties.
    Yang Y; Wang B; Shen X; Yao L; Wang L; Chen X; Xie S; Li T; Hu J; Yang D; Dong A
    J Am Chem Soc; 2018 Nov; 140(44):15038-15047. PubMed ID: 30359001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals.
    Ye X; Zhu C; Ercius P; Raja SN; He B; Jones MR; Hauwiller MR; Liu Y; Xu T; Alivisatos AP
    Nat Commun; 2015 Dec; 6():10052. PubMed ID: 26628256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy.
    Ye X; Chen J; Diroll BT; Murray CB
    Nano Lett; 2013 Mar; 13(3):1291-7. PubMed ID: 23418862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices.
    Chen J; Ye X; Murray CB
    ACS Nano; 2010 Apr; 4(4):2374-81. PubMed ID: 20302347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes.
    Chen J; Dong A; Cai J; Ye X; Kang Y; Kikkawa JM; Murray CB
    Nano Lett; 2010 Dec; 10(12):5103-8. PubMed ID: 21070007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
    Wei J; Schaeffer N; Pileni MP
    J Am Chem Soc; 2015 Nov; 137(46):14773-84. PubMed ID: 26549642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocrystals self-assembled in superlattices directed by the solvent-organic capping interaction.
    Dalmaschio CJ; da Silveira Firmiano EG; Pinheiro AN; Sobrinho DG; Farias de Moura A; Leite ER
    Nanoscale; 2013 Jun; 5(12):5602-10. PubMed ID: 23685460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding interactions between capped nanocrystals: three-body and chain packing effects.
    Schapotschnikow P; Vlugt TJ
    J Chem Phys; 2009 Sep; 131(12):124705. PubMed ID: 19791910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LEGO Materials.
    Talapin DV
    ACS Nano; 2008 Jun; 2(6):1097-100. PubMed ID: 19206324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural defects in periodic and quasicrystalline binary nanocrystal superlattices.
    Bodnarchuk MI; Shevchenko EV; Talapin DV
    J Am Chem Soc; 2011 Dec; 133(51):20837-49. PubMed ID: 22007847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices.
    Travesset A
    ACS Nano; 2017 Jun; 11(6):5375-5382. PubMed ID: 28514592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.