BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 25774451)

  • 1. Role of Tet1 and 5-hydroxymethylcytosine in cocaine action.
    Feng J; Shao N; Szulwach KE; Vialou V; Huynh J; Zhong C; Le T; Ferguson D; Cahill ME; Li Y; Koo JW; Ribeiro E; Labonte B; Laitman BM; Estey D; Stockman V; Kennedy P; Couroussé T; Mensah I; Turecki G; Faull KF; Ming GL; Song H; Fan G; Casaccia P; Shen L; Jin P; Nestler EJ
    Nat Neurosci; 2015 Apr; 18(4):536-44. PubMed ID: 25774451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cocaine shapes chromatin landscapes via Tet1.
    West AE
    Nat Neurosci; 2015 Apr; 18(4):478-80. PubMed ID: 25811475
    [No Abstract]   [Full Text] [Related]  

  • 3. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.
    Xu Y; Wu F; Tan L; Kong L; Xiong L; Deng J; Barbera AJ; Zheng L; Zhang H; Huang S; Min J; Nicholson T; Chen T; Xu G; Shi Y; Zhang K; Shi YG
    Mol Cell; 2011 May; 42(4):451-64. PubMed ID: 21514197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TET1 contributes to neurogenesis onset time during fetal brain development in mice.
    Kim H; Jang WY; Kang MC; Jeong J; Choi M; Sung Y; Park S; Kwon W; Jang S; Kim MO; Kim SH; Ryoo ZY
    Biochem Biophys Res Commun; 2016 Mar; 471(4):437-43. PubMed ID: 26902115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells.
    Wu H; Zhang Y
    Cell Cycle; 2011 Aug; 10(15):2428-36. PubMed ID: 21750410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cocaine-induced epigenetic DNA modification in mouse addiction-specific and non-specific tissues.
    Anier K; Urb M; Kipper K; Herodes K; Timmusk T; Zharkovsky A; Kalda A
    Neuropharmacology; 2018 Sep; 139():13-25. PubMed ID: 29964092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-29b/Tet1 regulatory axis epigenetically modulates mesendoderm differentiation in mouse embryonic stem cells.
    Tu J; Ng SH; Luk AC; Liao J; Jiang X; Feng B; Lun Mak KK; Rennert OM; Chan WY; Lee TL
    Nucleic Acids Res; 2015 Sep; 43(16):7805-22. PubMed ID: 26130713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxymethylation of microRNA-365-3p Regulates Nociceptive Behaviors via Kcnh2.
    Pan Z; Zhang M; Ma T; Xue ZY; Li GF; Hao LY; Zhu LJ; Li YQ; Ding HL; Cao JL
    J Neurosci; 2016 Mar; 36(9):2769-81. PubMed ID: 26937014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency.
    Jiang D; Zhang Y; Hart RP; Chen J; Herrup K; Li J
    Brain; 2015 Dec; 138(Pt 12):3520-36. PubMed ID: 26510954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis.
    Kang J; Lienhard M; Pastor WA; Chawla A; Novotny M; Tsagaratou A; Lasken RS; Thompson EC; Surani MA; Koralov SB; Kalantry S; Chavez L; Rao A
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4236-45. PubMed ID: 26199412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable 5-Hydroxymethylcytosine (5hmC) Acquisition Marks Gene Activation During Chondrogenic Differentiation.
    Taylor SE; Li YH; Smeriglio P; Rath M; Wong WH; Bhutani N
    J Bone Miner Res; 2016 Mar; 31(3):524-34. PubMed ID: 26363184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global increase in 5-hydroxymethylcytosine levels marks osteoarthritic chondrocytes.
    Taylor SE; Smeriglio P; Dhulipala L; Rath M; Bhutani N
    Arthritis Rheumatol; 2014 Jan; 66(1):90-100. PubMed ID: 24449578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus.
    Chen H; Dzitoyeva S; Manev H
    Restor Neurol Neurosci; 2012; 30(3):237-45. PubMed ID: 22426040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tet family proteins and 5-hydroxymethylcytosine in development and disease.
    Tan L; Shi YG
    Development; 2012 Jun; 139(11):1895-902. PubMed ID: 22569552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate.
    Dickson KM; Gustafson CB; Young JI; Züchner S; Wang G
    Biochem Biophys Res Commun; 2013 Oct; 439(4):522-7. PubMed ID: 24021282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering 5-hydroxymethylcytosine modification impacts ischemic brain injury.
    Miao Z; He Y; Xin N; Sun M; Chen L; Lin L; Li J; Kong J; Jin P; Xu X
    Hum Mol Genet; 2015 Oct; 24(20):5855-66. PubMed ID: 26231219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells.
    Wu H; D'Alessio AC; Ito S; Wang Z; Cui K; Zhao K; Sun YE; Zhang Y
    Genes Dev; 2011 Apr; 25(7):679-84. PubMed ID: 21460036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of intestinal stem cells by Tet1-mediated DNA hydroxymethylation.
    Kim R; Sheaffer KL; Choi I; Won KJ; Kaestner KH
    Genes Dev; 2016 Nov; 30(21):2433-2442. PubMed ID: 27856615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer.
    Kinney SR; Pradhan S
    Adv Exp Med Biol; 2013; 754():57-79. PubMed ID: 22956496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.