These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25774780)

  • 1. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice.
    Cavanaugh AR; Schwartz GJ; Blouet C
    PLoS One; 2015; 10(3):e0118888. PubMed ID: 25774780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding.
    Blouet C; Schwartz GJ
    Cell Metab; 2012 Nov; 16(5):579-87. PubMed ID: 23123165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity.
    Donovan MJ; Paulino G; Raybould HE
    Brain Res; 2009 Jan; 1248():136-40. PubMed ID: 19007755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in response to short-term high fat diet in mice.
    Huang KP; Ronveaux CC; Knotts TA; Rutkowsky JR; Ramsey JJ; Raybould HE
    Physiol Behav; 2020 Jul; 221():112894. PubMed ID: 32259599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons.
    Tsang AH; Nuzzaci D; Darwish T; Samudrala H; Blouet C
    Mol Metab; 2020 Dec; 42():101070. PubMed ID: 32898712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meal pattern of rats during hyperphagia induced by longterm food restriction is affected by diet composition.
    Del Prete E; Balkowski G; Scharrer E
    Appetite; 1994 Aug; 23(1):79-86. PubMed ID: 7826059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity.
    Argueta DA; DiPatrizio NV
    Physiol Behav; 2017 Mar; 171():32-39. PubMed ID: 28065722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.
    Li H; Kek HC; Lim J; Gelling RW; Han W
    Mol Nutr Food Res; 2016 Dec; 60(12):2565-2575. PubMed ID: 27468160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meal-feeding studies in mice: effects of diet on blood lipids and energy expenditure.
    Parks EJ; Schneider TL; Baar RA
    Comp Med; 2005 Feb; 55(1):24-9. PubMed ID: 15766205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors.
    Moran TH; Bi S
    Philos Trans R Soc Lond B Biol Sci; 2006 Jul; 361(1471):1211-8. PubMed ID: 16815799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High fat diet augments amphetamine sensitization in mice: Role of feeding pattern, obesity, and dopamine terminal changes.
    Fordahl SC; Locke JL; Jones SR
    Neuropharmacology; 2016 Oct; 109():170-182. PubMed ID: 27267686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity.
    Cota D; Matter EK; Woods SC; Seeley RJ
    J Neurosci; 2008 Jul; 28(28):7202-8. PubMed ID: 18614690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of early vs. late time-restricted high-fat feeding on circadian metabolism and weight loss in obese mice.
    Tsameret S; Chapnik N; Froy O
    Cell Mol Life Sci; 2023 Jun; 80(7):180. PubMed ID: 37329359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice.
    Shum M; Bellmann K; St-Pierre P; Marette A
    Diabetologia; 2016 Mar; 59(3):592-603. PubMed ID: 26733005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1 receptor null mice.
    Lee J; Martin E; Paulino G; de Lartigue G; Raybould HE
    Physiol Behav; 2011 May; 103(2):181-7. PubMed ID: 21277881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice.
    Korsheninnikova E; van der Zon GC; Voshol PJ; Janssen GM; Havekes LM; Grefhorst A; Kuipers F; Reijngoud DJ; Romijn JA; Ouwens DM; Maassen JA
    Diabetologia; 2006 Dec; 49(12):3049-57. PubMed ID: 17006666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.
    Iwasaki Y; Maejima Y; Suyama S; Yoshida M; Arai T; Katsurada K; Kumari P; Nakabayashi H; Kakei M; Yada T
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R360-9. PubMed ID: 25540101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPD1 regulates mTORC1-p70 S6 kinase axis in the control of insulin sensitivity in skeletal muscle.
    Tandelilin AA; Hirase T; Hudoyo AW; Cheng J; Toyama K; Morisaki H; Morisaki T
    BMC Endocr Disord; 2015 Mar; 15():11. PubMed ID: 25887856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioural and neurochemical mechanisms underpinning the feeding-suppressive effect of GLP-1/CCK combinatorial therapy.
    Roth E; Benoit S; Quentin B; Lam B; Will S; Ma M; Heeley N; Darwish T; Shrestha Y; Gribble F; Reimann F; Pshenichnaya I; Yeo G; Baker DJ; Trevaskis JL; Blouet C
    Mol Metab; 2021 Jan; 43():101118. PubMed ID: 33221554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit.
    Blouet C; Jo YH; Li X; Schwartz GJ
    J Neurosci; 2009 Jul; 29(26):8302-11. PubMed ID: 19571121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.