These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Cai X; Li X; Xie G; He Z; Gao K; Liu K; Chen D; Cao Y; Su SJ Chem Sci; 2016 Jul; 7(7):4264-4275. PubMed ID: 30155073 [TBL] [Abstract][Full Text] [Related]
5. Solvent effect on the photophysical properties of thermally activated delayed fluorescence molecules. Zhang X; Shi Y; Cai L; Zhou Y; Wang CK; Lin L Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117473. PubMed ID: 31470345 [TBL] [Abstract][Full Text] [Related]
6. Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States. Samanta PK; Kim D; Coropceanu V; Brédas JL J Am Chem Soc; 2017 Mar; 139(11):4042-4051. PubMed ID: 28244314 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap. Dias FB Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987577 [TBL] [Abstract][Full Text] [Related]
8. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. Gibson J; Monkman AP; Penfold TJ Chemphyschem; 2016 Oct; 17(19):2956-2961. PubMed ID: 27338655 [TBL] [Abstract][Full Text] [Related]
9. Computational Investigations of the Detailed Mechanism of Reverse Intersystem Crossing in Inverted Singlet-Triplet Gap Molecules. Valverde D; Ser CT; Ricci G; Jorner K; Pollice R; Aspuru-Guzik A; Olivier Y ACS Appl Mater Interfaces; 2024 Dec; 16(49):66991-67001. PubMed ID: 38728616 [TBL] [Abstract][Full Text] [Related]
10. Accelerating Intersystem Crossing in Multiresonance Thermally Activated Delayed Fluorescence Emitters via Long-Range Charge Transfer. Situ Z; Li X; Gao H; Zhang J; Li Y; Zhao F; Kong J; Zhao H; Zhou M; Wang Y; Kuang Z; Xia A J Phys Chem Lett; 2024 Apr; 15(15):4197-4205. PubMed ID: 38598694 [TBL] [Abstract][Full Text] [Related]
11. Efficient Direct Reverse Intersystem Crossing between Charge Transfer-Type Singlet and Triplet States in a Purely Organic Molecule. Wada Y; Wakisaka Y; Kaji H Chemphyschem; 2021 Apr; 22(7):625-632. PubMed ID: 33586264 [TBL] [Abstract][Full Text] [Related]
12. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Hosokai T; Matsuzaki H; Nakanotani H; Tokumaru K; Tsutsui T; Furube A; Nasu K; Nomura H; Yahiro M; Adachi C Sci Adv; 2017 May; 3(5):e1603282. PubMed ID: 28508081 [TBL] [Abstract][Full Text] [Related]
13. A Novel Strategy toward Thermally Activated Delayed Fluorescence from a Locally Excited State. Chen J; Xiao X; Li S; Duan Y; Wang G; Liao Y; Peng Q; Fu H; Geng H; Shuai Z J Phys Chem Lett; 2022 Mar; 13(11):2653-2660. PubMed ID: 35297633 [TBL] [Abstract][Full Text] [Related]
14. Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters. Cho E; Liu L; Coropceanu V; Brédas JL J Chem Phys; 2020 Oct; 153(14):144708. PubMed ID: 33086823 [TBL] [Abstract][Full Text] [Related]
15. The Role of Local Triplet Excited States and D-A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices. Dias FB; Santos J; Graves DR; Data P; Nobuyasu RS; Fox MA; Batsanov AS; Palmeira T; Berberan-Santos MN; Bryce MR; Monkman AP Adv Sci (Weinh); 2016 Dec; 3(12):1600080. PubMed ID: 27981000 [TBL] [Abstract][Full Text] [Related]
16. Vibrationally Assisted Direct Intersystem Crossing between the Same Charge-Transfer States for Thermally Activated Delayed Fluorescence: Analysis by Marcus-Hush Theory Including Reorganization Energy. Serdiuk IE; Mońka M; Kozakiewicz K; Liberek B; Bojarski P; Park SY J Phys Chem B; 2021 Mar; 125(10):2696-2706. PubMed ID: 33661000 [TBL] [Abstract][Full Text] [Related]
17. Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Bergmann L; Hedley GJ; Baumann T; Bräse S; Samuel ID Sci Adv; 2016 Jan; 2(1):e1500889. PubMed ID: 26767194 [TBL] [Abstract][Full Text] [Related]
18. Vibronic Coupling Effect on the Vibrationally Resolved Electronic Spectra and Intersystem Crossing Rates of a TADF Emitter: 7-PhQAD. Lin S; Pei Z; Zhang B; Ma H; Liang W J Phys Chem A; 2022 Jan; 126(2):239-248. PubMed ID: 34989581 [TBL] [Abstract][Full Text] [Related]
19. Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Serevičius T; Nakagawa T; Kuo MC; Cheng SH; Wong KT; Chang CH; Kwong RC; Xia S; Adachi C Phys Chem Chem Phys; 2013 Oct; 15(38):15850-5. PubMed ID: 23907636 [TBL] [Abstract][Full Text] [Related]
20. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. Zhang Q; Li J; Shizu K; Huang S; Hirata S; Miyazaki H; Adachi C J Am Chem Soc; 2012 Sep; 134(36):14706-9. PubMed ID: 22931361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]