BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25774984)

  • 21. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module.
    Fujimoto Z; Kuno A; Kaneko S; Kobayashi H; Kusakabe I; Mizuno H
    J Mol Biol; 2002 Feb; 316(1):65-78. PubMed ID: 11829503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution crystal structures of Caldicellulosiruptor strain Rt8B.4 carbohydrate-binding module CBM27-1 and its complex with mannohexaose.
    Roske Y; Sunna A; Pfeil W; Heinemann U
    J Mol Biol; 2004 Jul; 340(3):543-54. PubMed ID: 15210353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes.
    Wojtaszewski JF; Birk JB; Frøsig C; Holten M; Pilegaard H; Dela F
    J Physiol; 2005 Apr; 564(Pt 2):563-73. PubMed ID: 15718261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11).
    Viegas A; Sardinha J; Freire F; Duarte DF; Carvalho AL; Fontes CM; Romão MJ; Macedo AL; Cabrita EJ
    Biochem J; 2013 Apr; 451(2):289-300. PubMed ID: 23356867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1.
    Amodeo GA; Rudolph MJ; Tong L
    Nature; 2007 Sep; 449(7161):492-5. PubMed ID: 17851534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites.
    Lammerts van Bueren A; Boraston AB
    J Mol Biol; 2004 Jul; 340(4):869-79. PubMed ID: 15223327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycogen debranching enzyme association with beta-subunit regulates AMP-activated protein kinase activity.
    Sakoda H; Fujishiro M; Fujio J; Shojima N; Ogihara T; Kushiyama A; Fukushima Y; Anai M; Ono H; Kikuchi M; Horike N; Viana AY; Uchijima Y; Kurihara H; Asano T
    Am J Physiol Endocrinol Metab; 2005 Sep; 289(3):E474-81. PubMed ID: 15886229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of the AMP-activated protein kinase beta1 and beta2 subunits in skeletal muscle.
    Chen Z; Heierhorst J; Mann RJ; Mitchelhill KI; Michell BJ; Witters LA; Lynch GS; Kemp BE; Stapleton D
    FEBS Lett; 1999 Oct; 460(2):343-8. PubMed ID: 10544261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray structure of a protease-resistant mutant form of human galectin-8 with two carbohydrate recognition domains.
    Yoshida H; Yamashita S; Teraoka M; Itoh A; Nakakita S; Nishi N; Kamitori S
    FEBS J; 2012 Oct; 279(20):3937-51. PubMed ID: 22913484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain.
    Handa N; Takagi T; Saijo S; Kishishita S; Takaya D; Toyama M; Terada T; Shirouzu M; Suzuki A; Lee S; Yamauchi T; Okada-Iwabu M; Iwabu M; Kadowaki T; Minokoshi Y; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2011 May; 67(Pt 5):480-7. PubMed ID: 21543851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.
    Townley R; Shapiro L
    Science; 2007 Mar; 315(5819):1726-9. PubMed ID: 17289942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography.
    Ouyang Y; Zhu L; Li Y; Guo M; Liu Y; Cheng J; Zhao J; Wu Y
    Sci Rep; 2016 Apr; 6():24191. PubMed ID: 27063142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insights into the architecture and allostery of full-length AMP-activated protein kinase.
    Zhu L; Chen L; Zhou XM; Zhang YY; Zhang YJ; Zhao J; Ji SR; Wu JW; Wu Y
    Structure; 2011 Apr; 19(4):515-22. PubMed ID: 21481774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes.
    Scott JW; van Denderen BJ; Jorgensen SB; Honeyman JE; Steinberg GR; Oakhill JS; Iseli TJ; Koay A; Gooley PR; Stapleton D; Kemp BE
    Chem Biol; 2008 Nov; 15(11):1220-30. PubMed ID: 19022182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery and characterization of a substrate selective p38alpha inhibitor.
    Davidson W; Frego L; Peet GW; Kroe RR; Labadia ME; Lukas SM; Snow RJ; Jakes S; Grygon CA; Pargellis C; Werneburg BG
    Biochemistry; 2004 Sep; 43(37):11658-71. PubMed ID: 15362850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK).
    Gu X; Bridges MD; Yan Y; de Waal PW; Zhou XE; Suino-Powell KM; Xu HE; Hubbell WL; Melcher K
    J Biol Chem; 2018 Nov; 293(44):16994-17007. PubMed ID: 30206123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals.
    Janeček Š; Svensson B; MacGregor EA
    Enzyme Microb Technol; 2011 Oct; 49(5):429-40. PubMed ID: 22112614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alpha-glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens.
    Lammerts van Bueren A; Finn R; Ausió J; Boraston AB
    Biochemistry; 2004 Dec; 43(49):15633-42. PubMed ID: 15581376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbohydrate binding module recognition of xyloglucan defined by polar contacts with branching xyloses and CH-Π interactions.
    von Schantz L; Håkansson M; Logan DT; Nordberg-Karlsson E; Ohlin M
    Proteins; 2014 Dec; 82(12):3466-75. PubMed ID: 25302425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.