These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 25775151)
21. Inhibiting gene expression with peptide nucleic acid (PNA)--peptide conjugates that target chromosomal DNA. Hu J; Corey DR Biochemistry; 2007 Jun; 46(25):7581-9. PubMed ID: 17536840 [TBL] [Abstract][Full Text] [Related]
22. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces. Shankar A; Jagota A; Mittal J J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176 [TBL] [Abstract][Full Text] [Related]
23. Charge transfer through modified peptide nucleic acids. Wierzbinski E; de Leon A; Davis KL; Bezer S; Wolak MA; Kofke MJ; Schlaf R; Achim C; Waldeck DH Langmuir; 2012 Jan; 28(4):1971-81. PubMed ID: 22217076 [TBL] [Abstract][Full Text] [Related]
24. Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA). Rapireddy S; He G; Roy S; Armitage BA; Ly DH J Am Chem Soc; 2007 Dec; 129(50):15596-600. PubMed ID: 18027941 [TBL] [Abstract][Full Text] [Related]
25. Self-assembly of azide containing dipeptides. Yuran S; Razvag Y; Das P; Reches M J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029 [TBL] [Abstract][Full Text] [Related]
26. RNA guanine quadruplex invasion by complementary and homologous PNA probes. Marin VL; Armitage BA J Am Chem Soc; 2005 Jun; 127(22):8032-3. PubMed ID: 15926825 [TBL] [Abstract][Full Text] [Related]
27. Preliminary studies on noncovalent hyperbranched polymers based on PNA and DNA building blocks. Moccia M; Musumeci D; Roviello GN; Fusco S; Valente M; Bucci EM; Sapio R; Pedone C; Netti PA J Pept Sci; 2009 Oct; 15(10):647-53. PubMed ID: 19691061 [TBL] [Abstract][Full Text] [Related]
28. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis. Sénamaud-Beaufort C; Leforestier E; Saison-Behmoaras TE Oligonucleotides; 2003; 13(6):465-78. PubMed ID: 15025913 [TBL] [Abstract][Full Text] [Related]
29. Control of helical handedness in DNA and PNA nanostructures. Corradini R; Tedeschi T; Sforza S; Green MM; Marchelli R Methods Mol Biol; 2011; 749():79-92. PubMed ID: 21674366 [TBL] [Abstract][Full Text] [Related]
30. Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA. Sun D; Stadler AL; Gurevich M; Palma E; Stach E; van der Lelie D; Gang O Nanoscale; 2012 Nov; 4(21):6722-5. PubMed ID: 23026861 [TBL] [Abstract][Full Text] [Related]
31. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Diaferia C; Avitabile C; Leone M; Gallo E; Saviano M; Accardo A; Romanelli A Chemistry; 2021 Oct; 27(57):14307-14316. PubMed ID: 34314536 [TBL] [Abstract][Full Text] [Related]
32. Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Basavalingappa V; Bera S; Xue B; Azuri I; Tang Y; Tao K; Shimon LJW; Sawaya MR; Kolusheva S; Eisenberg DS; Kronik L; Cao Y; Wei G; Gazit E Nat Commun; 2019 Nov; 10(1):5256. PubMed ID: 31748568 [TBL] [Abstract][Full Text] [Related]
33. Self-Assembling of Fmoc-GC Peptide Nucleic Acid Dimers into Highly Fluorescent Aggregates. Avitabile C; Diaferia C; Della Ventura B; Mercurio FA; Leone M; Roviello V; Saviano M; Velotta R; Morelli G; Accardo A; Romanelli A Chemistry; 2018 Mar; 24(18):4729-4735. PubMed ID: 29377290 [TBL] [Abstract][Full Text] [Related]
35. Hydrogen-bonding interactions in peptide nucleic acid and deoxyribonucleic acid: a comparative study. Herbert HE; Halls MD; Hratchian HP; Raghavachari K J Phys Chem B; 2006 Feb; 110(7):3336-43. PubMed ID: 16494348 [TBL] [Abstract][Full Text] [Related]
36. Regulation of duplex DNA strand displacement by visible light sensitive bis-peptide nucleic acid. Sawada S; Imada I; Kato N; Kaihatsu K Nucleic Acids Symp Ser (Oxf); 2009; (53):191-2. PubMed ID: 19749325 [TBL] [Abstract][Full Text] [Related]
37. Specific recognition of cytosine by hypoxanthine in pyrrolidinyl peptide nucleic acid. Vilaivan C; Srinarang W; Yotapan N; Mansawat W; Boonlua C; Kawakami J; Yamaguchi Y; Tanaka Y; Vilaivan T Org Biomol Chem; 2013 Apr; 11(14):2310-7. PubMed ID: 23423157 [TBL] [Abstract][Full Text] [Related]
38. Recent advancements in bionanomaterial applications of peptide nucleic acid assemblies. Sarkar S Biopolymers; 2024 Mar; 115(2):e23567. PubMed ID: 37792292 [TBL] [Abstract][Full Text] [Related]
39. Molecular properties and medical applications of peptide nucleic acids. Malcher J; Wesoły J; Bluyssen HA Mini Rev Med Chem; 2014 May; 14(5):401-10. PubMed ID: 24766383 [TBL] [Abstract][Full Text] [Related]
40. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids. Higashi SL; Rozi N; Hanifah SA; Ikeda M Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]