BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 25775564)

  • 1. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor family-specific DNA shape readout revealed by quantitative specificity models.
    Yang L; Orenstein Y; Jolma A; Yin Y; Taipale J; Shamir R; Rohs R
    Mol Syst Biol; 2017 Feb; 13(2):910. PubMed ID: 28167566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding.
    Li J; Sagendorf JM; Chiu TP; Pasi M; Perez A; Rohs R
    Nucleic Acids Res; 2017 Dec; 45(22):12877-12887. PubMed ID: 29165643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of TF target sites based on atomistic models of protein-DNA complexes.
    Angarica VE; Pérez AG; Vasconcelos AT; Collado-Vides J; Contreras-Moreira B
    BMC Bioinformatics; 2008 Oct; 9():436. PubMed ID: 18922190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo.
    Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS
    Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
    Smaczniak C; Angenent GC; Kaufmann K
    Methods Mol Biol; 2017; 1629():67-82. PubMed ID: 28623580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
    Ma W; Yang L; Rohs R; Noble WS
    Bioinformatics; 2017 Oct; 33(19):3003-3010. PubMed ID: 28541376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality versus accuracy: result of a reanalysis of protein-binding microarrays from the DREAM5 challenge by using BayesPI2 including dinucleotide interdependence.
    Wang J
    BMC Bioinformatics; 2014 Aug; 15(1):289. PubMed ID: 25158938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.
    Wong KC; Li Y; Peng C; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):261-71. PubMed ID: 27045826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data.
    Orenstein Y; Shamir R
    Nucleic Acids Res; 2014 Apr; 42(8):e63. PubMed ID: 24500199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data.
    Kähärä J; Lähdesmäki H
    BMC Bioinformatics; 2013; 14 Suppl 10(Suppl 10):S2. PubMed ID: 24267147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariation between homeodomain transcription factors and the shape of their DNA binding sites.
    Dror I; Zhou T; Mandel-Gutfreund Y; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(1):430-41. PubMed ID: 24078250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.