BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 25775564)

  • 21. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins.
    Kribelbauer JF; Loker RE; Feng S; Rastogi C; Abe N; Rube HT; Bussemaker HJ; Mann RS
    Mol Cell; 2020 Apr; 78(1):152-167.e11. PubMed ID: 32053778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unified approach for quantifying and interpreting DNA shape readout by transcription factors.
    Rube HT; Rastogi C; Kribelbauer JF; Bussemaker HJ
    Mol Syst Biol; 2018 Feb; 14(2):e7902. PubMed ID: 29472273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro DNA-binding profile of transcription factors: methods and new insights.
    Wang J; Lu J; Gu G; Liu Y
    J Endocrinol; 2011 Jul; 210(1):15-27. PubMed ID: 21389103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding.
    Le DD; Shimko TC; Aditham AK; Keys AM; Longwell SA; Orenstein Y; Fordyce PM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3702-E3711. PubMed ID: 29588420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical Modeling of Avidity Distribution and Estimating General Binding Properties of Transcription Factors from Genome-Wide Binding Profiles.
    Kuznetsov VA
    Methods Mol Biol; 2017; 1613():193-276. PubMed ID: 28849563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence features of DNA binding sites reveal structural class of associated transcription factor.
    Narlikar L; Hartemink AJ
    Bioinformatics; 2006 Jan; 22(2):157-63. PubMed ID: 16267080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QBiC-Pred: quantitative predictions of transcription factor binding changes due to sequence variants.
    Martin V; Zhao J; Afek A; Mielko Z; Gordân R
    Nucleic Acids Res; 2019 Jul; 47(W1):W127-W135. PubMed ID: 31114870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
    Yang L; Zhou T; Dror I; Mathelier A; Wasserman WW; Gordân R; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D148-55. PubMed ID: 24214955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling determinants of transcription factor binding outside the core binding site.
    Levo M; Zalckvar E; Sharon E; Dantas Machado AC; Kalma Y; Lotam-Pompan M; Weinberger A; Yakhini Z; Rohs R; Segal E
    Genome Res; 2015 Jul; 25(7):1018-29. PubMed ID: 25762553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A feature-based approach to modeling protein-DNA interactions.
    Sharon E; Lubliner S; Segal E
    PLoS Comput Biol; 2008 Aug; 4(8):e1000154. PubMed ID: 18725950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels.
    Wang X; Kuwahara H; Gao X
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S5. PubMed ID: 25605483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data.
    Wong KC; Peng C; Li Y
    IEEE Trans Cybern; 2017 Feb; 47(2):415-424. PubMed ID: 26887021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.