These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25776231)

  • 21. Design of Ti-Pt Co-doped α-Fe
    Zhong Z; Zhan G; Du B; Lu X; Qin Z; Xiao J
    J Colloid Interface Sci; 2023 Jul; 641():91-104. PubMed ID: 36924549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A uniformly decorated and photostable polydopamine-organic semiconductor to boost the photoelectrochemical water splitting performance of CdS photoanodes.
    Ruan M; Guo D; Jia Q
    Dalton Trans; 2021 Feb; 50(5):1913-1922. PubMed ID: 33475654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.
    Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S
    Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO
    Pattengale B; Huang J
    Phys Chem Chem Phys; 2016 Dec; 18(48):32820-32825. PubMed ID: 27883137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.
    Seabold JA; Zhu K; Neale NR
    Phys Chem Chem Phys; 2014 Jan; 16(3):1121-31. PubMed ID: 24287501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile and Large-Area Preparation of Porous Ag
    Cao Q; Yu J; Yuan K; Zhong M; Delaunay JJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19507-19512. PubMed ID: 28560876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ordered Ti-doped FeVO
    Zeng Q; Fu X; Chang S; Zhang Q; Xiong Z; Liu Y; Peng G; Li M
    J Colloid Interface Sci; 2021 Dec; 604():562-567. PubMed ID: 34274717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting.
    Meng M; Wu X; Zhu X; Zhu X; Chu PK
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Branched Ca-Fe
    Chen D; Liu Z; Guo Z; Ruan M; Yan W
    ChemSusChem; 2019 Jul; 12(14):3286-3295. PubMed ID: 31140747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defective Fe
    Wang J; Wang Y; Xv X; Chen Y; Yang X; Zhou J; Li S; Cao F; Qin G
    Dalton Trans; 2019 Aug; 48(31):11934-11940. PubMed ID: 31317142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes.
    Jang YJ; Lee JS
    ChemSusChem; 2019 May; 12(9):1835-1845. PubMed ID: 30614648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An investigation on the role of W doping in BiVO
    Zhao X; Hu J; Chen S; Chen Z
    Phys Chem Chem Phys; 2018 May; 20(19):13637-13645. PubMed ID: 29737988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BiVO₄ Nanostructures for Photoelectrochemical (PEC) Solar Water Splitting Applications.
    Rani BJ; Praveenkumar M; Ravichandran S; Ravi G; Guduru RK; Yuvakkumar R
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7427-7435. PubMed ID: 31039908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications.
    Wang Y; Chen X; Xiu H; Zhuang H; Li J; Zhou Y; Liu D; Kuang Y
    Small; 2021 Dec; 17(52):e2104307. PubMed ID: 34725925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoelectrochemical Properties and Behavior of α-SnWO
    Zhu Z; Sarker P; Zhao C; Zhou L; Grimm RL; Huda MN; Rao PM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1459-1470. PubMed ID: 27991759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.