These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25776865)

  • 1. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect.
    Shin DH; Kim S; Kim JM; Jang CW; Kim JH; Lee KW; Kim J; Oh SD; Lee DH; Kang SS; Kim CO; Choi SH; Kim KJ
    Adv Mater; 2015 Apr; 27(16):2614-20. PubMed ID: 25776865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic-Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light.
    Shao D; Gao J; Chow P; Sun H; Xin G; Sharma P; Lian J; Koratkar NA; Sawyer S
    Nano Lett; 2015 Jun; 15(6):3787-92. PubMed ID: 25938811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of light-emitting diode based on hydrophilic CdTe quantum dots incorporating dehydrated silica gel.
    Du J; Wang C; Xu X; Wang Z; Xu S; Cui Y
    Luminescence; 2016 Mar; 31(2):419-422. PubMed ID: 26199049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atypical quantum confinement effect in silicon nanowires.
    Sorokin PB; Avramov PV; Chernozatonskii LA; Fedorov DG; Ovchinnikov SG
    J Phys Chem A; 2008 Oct; 112(40):9955-64. PubMed ID: 18785695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots.
    Tang L; Ji R; Li X; Bai G; Liu CP; Hao J; Lin J; Jiang H; Teng KS; Yang Z; Lau SP
    ACS Nano; 2014 Jun; 8(6):6312-20. PubMed ID: 24848545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.
    Huang L; Wu Q; Wang J; Foda M; Liu J; Cai K; Han H
    Chem Commun (Camb); 2014 Mar; 50(22):2896-9. PubMed ID: 24492702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconductor nanowires directly grown on graphene--towards wafer scale transferable nanowire arrays with improved electrical contact.
    Alper JP; Gutes A; Carraro C; Maboudian R
    Nanoscale; 2013 May; 5(10):4114-8. PubMed ID: 23563903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting photoresponse in silicon metal-semiconductor-metal photodetector using semiconducting quantum dots.
    Biswas C; Kim Y; Lee YH
    Sci Rep; 2016 Nov; 6():37857. PubMed ID: 27886274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3 ).
    Song J; Li J; Li X; Xu L; Dong Y; Zeng H
    Adv Mater; 2015 Nov; 27(44):7162-7. PubMed ID: 26444873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise size separation of water-soluble red-to-near-infrared-luminescent silicon quantum dots by gel electrophoresis.
    Fujii M; Minami A; Sugimoto H
    Nanoscale; 2020 Apr; 12(16):9266-9271. PubMed ID: 32313916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid graphene-quantum dot phototransistors with ultrahigh gain.
    Konstantatos G; Badioli M; Gaudreau L; Osmond J; Bernechea M; Garcia de Arquer FP; Gatti F; Koppens FH
    Nat Nanotechnol; 2012 May; 7(6):363-8. PubMed ID: 22562036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducing electronic changes in graphene through silicon (100) substrate modification.
    Xu Y; He KT; Schmucker SW; Guo Z; Koepke JC; Wood JD; Lyding JW; Aluru NR
    Nano Lett; 2011 Jul; 11(7):2735-42. PubMed ID: 21661740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence.
    Yeh TF; Huang WL; Chung CJ; Chiang IT; Chen LC; Chang HY; Su WC; Cheng C; Chen SJ; Teng H
    J Phys Chem Lett; 2016 Jun; 7(11):2087-92. PubMed ID: 27192445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.
    Rossi A; Tanttu T; Hudson FE; Sun Y; Möttönen M; Dzurak AS
    J Vis Exp; 2015 Jun; (100):e52852. PubMed ID: 26067215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.
    Wu Q; Sun Y; Zhang X; Zhang X; Dong S; Qiu H; Wang L; Zhao L
    J Chromatogr A; 2017 Apr; 1492():61-69. PubMed ID: 28284766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Quantum Dots: Synthesis and Applications.
    Kalluri A; Debnath D; Dharmadhikari B; Patra P
    Methods Enzymol; 2018; 609():335-354. PubMed ID: 30244796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires.
    Valenta J; Bruhn B; Linnros J
    Nano Lett; 2011 Jul; 11(7):3003-9. PubMed ID: 21711002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductance fluctuations in chaotic bilayer graphene quantum dots.
    Bao R; Huang L; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-bandgap InAs quantum-dots have long-range electron-hole exchange whereas indirect gap Si dots have short-range exchange.
    Luo JW; Franceschetti A; Zunger A
    Nano Lett; 2009 Jul; 9(7):2648-53. PubMed ID: 19583283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial variation of available electronic excitations within individual quantum dots.
    Jung HJ; Dasgupta NP; Van Stockum PB; Koh AL; Sinclair R; Prinz FB
    Nano Lett; 2013 Feb; 13(2):716-21. PubMed ID: 23276278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.