BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25777078)

  • 1. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions.
    Xu F; Ma T; Zhou L; Hu Z; Shi L
    Chemosphere; 2015 Jul; 130():46-51. PubMed ID: 25777078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage chromium isotope fractionation during microbial Cr(VI) reduction.
    Chen G; Han J; Mu Y; Yu H; Qin L
    Water Res; 2019 Jan; 148():10-18. PubMed ID: 30343194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential isotopic fractionation during Cr(VI) reduction by an aquifer-derived bacterium under aerobic versus denitrifying conditions.
    Han R; Qin L; Brown ST; Christensen JN; Beller HR
    Appl Environ Microbiol; 2012 Apr; 78(7):2462-4. PubMed ID: 22286991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Mechanism Conceptual Model for Cr Isotope Fractionation during Reduction by Zerovalent Iron under Saturated Flow Conditions.
    Jamieson-Hanes JH; Amos RT; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2015 May; 49(9):5467-75. PubMed ID: 25839086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials.
    Basu A; Johnson TM
    Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor.
    Lu YZ; Chen GJ; Bai YN; Fu L; Qin LP; Zeng RJ
    Water Res; 2018 Mar; 130():263-270. PubMed ID: 29241112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.
    Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L
    Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope fractionation and spectroscopic analysis as an evidence of Cr(VI) reduction during biosorption.
    Šillerová H; Chrastný V; Čadková E; Komárek M
    Chemosphere; 2014 Jan; 95():402-7. PubMed ID: 24139156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol.
    Babechuk MG; Kleinhanns IC; Schoenberg R
    Geobiology; 2017 Jan; 15(1):30-50. PubMed ID: 27444369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects.
    Ellis AS; Johnson TM; Bullen TD
    Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using stable isotope fractionation factors to identify Cr(VI) reduction pathways: Metal-mineral-microbe interactions.
    Zhang Q; Amor K; Galer SJG; Thompson I; Porcelli D
    Water Res; 2019 Mar; 151():98-109. PubMed ID: 30594094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring Cr toxicity and remediation processes - combining a whole-cell bioreporter and Cr isotope techniques.
    Zhang Q; Song Y; Amor K; Huang WE; Porcelli D; Thompson I
    Water Res; 2019 Apr; 153():295-303. PubMed ID: 30735959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions.
    Jamieson-Hanes JH; Gibson BD; Lindsay MB; Kim Y; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2012 Jun; 46(12):6783-9. PubMed ID: 22676583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.
    Larsen KK; Wielandt D; Schiller M; Bizzarro M
    J Chromatogr A; 2016 Apr; 1443():162-74. PubMed ID: 27036208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic.
    Pereira NS; Voegelin AR; Paulukat C; Sial AN; Ferreira VP; Frei R
    Geobiology; 2016 Jan; 14(1):54-67. PubMed ID: 26331762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values.
    Novak M; Chrastny V; Cadkova E; Farkas J; Bullen TD; Tylcer J; Szurmanova Z; Cron M; Prechova E; Curik J; Stepanova M; Pasava J; Erbanova L; Houskova M; Puncochar K; Hellerich LA
    Environ Sci Technol; 2014 Jun; 48(11):6089-96. PubMed ID: 24779992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive transport modeling of chromium isotope fractionation during Cr(VI) reduction.
    Jamieson-Hanes JH; Amos RT; Blowes DW
    Environ Sci Technol; 2012 Dec; 46(24):13311-6. PubMed ID: 23153412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of the natural attenuation of chromium contamination in the presence of nitrate using isotopic methods. A case study from the Matanza-Riachuelo River basin, Argentina.
    Ceballos E; Margalef-Martí R; Carrey R; Frei R; Otero N; Soler A; Ayora C
    Sci Total Environ; 2020 Jan; 699():134331. PubMed ID: 31670212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil.
    Pal A; Paul AK
    Microbiol Res; 2004; 159(4):347-54. PubMed ID: 15646381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.