BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25777134)

  • 1. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine.
    Commichau FM; Alzinger A; Sande R; Bretzel W; Reuß DR; Dormeyer M; Chevreux B; Schuldes J; Daniel R; Akeroyd M; Wyss M; Hohmann HP; Prágai Z
    Metab Eng; 2015 May; 29():196-207. PubMed ID: 25777134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine.
    Commichau FM; Alzinger A; Sande R; Bretzel W; Meyer FM; Chevreux B; Wyss M; Hohmann HP; Prágai Z
    Metab Eng; 2014 Sep; 25():38-49. PubMed ID: 24972371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin B6 biosynthesis: formation of pyridoxine 5'-phosphate from 4-(phosphohydroxy)-L-threonine and 1-deoxy-D-xylulose-5-phosphate by PdxA and PdxJ protein.
    Laber B; Maurer W; Scharf S; Stepusin K; Schmidt FS
    FEBS Lett; 1999 Apr; 449(1):45-8. PubMed ID: 10225425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of vitamin B6 in Rhizobium: in vitro synthesis of pyridoxine from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine.
    Tazoe M; Ichikawa K; Hoshino T
    Biosci Biotechnol Biochem; 2002 Apr; 66(4):934-6. PubMed ID: 12036081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways.
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):1-20. PubMed ID: 11200221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein engineering and iterative multimodule optimization for vitamin B
    Liu L; Li J; Gai Y; Tian Z; Wang Y; Wang T; Liu P; Yuan Q; Ma H; Lee SY; Zhang D
    Nat Commun; 2023 Aug; 14(1):5304. PubMed ID: 37652926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Vitamin B 6 biosynthesis in Bacillus subtilis].
    Pflug W; Lingens F
    Hoppe Seylers Z Physiol Chem; 1978 May; 359(5):559-70. PubMed ID: 97199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis.
    Richts B; Commichau FM
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2297-2305. PubMed ID: 33665688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin B6 metabolism in microbes and approaches for fermentative production.
    Rosenberg J; Ischebeck T; Commichau FM
    Biotechnol Adv; 2017; 35(1):31-40. PubMed ID: 27890703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-Phospho-hydroxy-L-threonine is an obligatory intermediate in pyridoxal 5'-phosphate coenzyme biosynthesis in Escherichia coli K-12.
    Zhao G; Winkler ME
    FEMS Microbiol Lett; 1996 Jan; 135(2-3):275-80. PubMed ID: 8595869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of insertions in the complex pdxJ operon of Escherichia coli K-12 by lon and other mutations.
    Lam HM; Tancula E; Dempsey WB; Winkler ME
    J Bacteriol; 1992 Mar; 174(5):1554-67. PubMed ID: 1537800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional complementation between the PDX1 vitamin B6 biosynthetic gene of Cercospora nicotianae and pdxJ of Escherichia coli.
    Wetzel DK; Ehrenshaft M; Denslow SA; Daub ME
    FEBS Lett; 2004 Apr; 564(1-2):143-6. PubMed ID: 15094056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth response to 4-hydroxy-L-threonine of Escherichia coli mutants blocked in vitamin B6 biosynthesis.
    Drewke C; Notheis C; Hansen U; Leistner E; Hemscheidt T; Hill RE; Spenser ID
    FEBS Lett; 1993 Mar; 318(2):125-8. PubMed ID: 8440369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis.
    Rosenberg J; Yeak KC; Commichau FM
    Environ Microbiol; 2018 Jan; 20(1):156-168. PubMed ID: 29027347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis.
    Ding X; Zheng Z; Zhao G; Wang L; Wang H; Yang Q; Zhang M; Li L; Wang P
    Microb Cell Fact; 2022 May; 21(1):101. PubMed ID: 35643569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis.
    Liu Y; Zhu Y; Ma W; Shin HD; Li J; Liu L; Du G; Chen J
    Metab Eng; 2014 Jul; 24():61-9. PubMed ID: 24815549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of 1-deoxy-D-xylulose 5-phosphate synthase and transketolase of Bacillus subtilis in relation to vitamin B6 biosynthesis.
    Sakai A; Kinoshita N; Kita M; Katsuragi T; Tani Y
    J Nutr Sci Vitaminol (Tokyo); 2003 Feb; 49(1):73-5. PubMed ID: 12882400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine.
    Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Squalene in
    Song Y; Guan Z; van Merkerk R; Pramastya H; Abdallah II; Setroikromo R; Quax WJ
    J Agric Food Chem; 2020 Apr; 68(15):4447-4455. PubMed ID: 32208656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.