These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 25777153)
1. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates. Garrabou X; Beck T; Hilvert D Angew Chem Int Ed Engl; 2015 May; 54(19):5609-12. PubMed ID: 25777153 [TBL] [Abstract][Full Text] [Related]
2. Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme. Garrabou X; Wicky BI; Hilvert D J Am Chem Soc; 2016 Jun; 138(22):6972-4. PubMed ID: 27196438 [TBL] [Abstract][Full Text] [Related]
3. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction. Garrabou X; Macdonald DS; Wicky BIM; Hilvert D Angew Chem Int Ed Engl; 2018 May; 57(19):5288-5291. PubMed ID: 29446221 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: structural analysis of reaction intermediates. Lorentzen E; Siebers B; Hensel R; Pohl E Biochemistry; 2005 Mar; 44(11):4222-9. PubMed ID: 15766250 [TBL] [Abstract][Full Text] [Related]
5. Enantiocomplementary Synthesis of γ-Nitroketones Using Designed and Evolved Carboligases. Garrabou X; Verez R; Hilvert D J Am Chem Soc; 2017 Jan; 139(1):103-106. PubMed ID: 27992715 [TBL] [Abstract][Full Text] [Related]
6. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase. Roldán R; Sanchez-Moreno I; Scheidt T; Hélaine V; Lemaire M; Parella T; Clapés P; Fessner WD; Guérard-Hélaine C Chemistry; 2017 Apr; 23(21):5005-5009. PubMed ID: 28266745 [TBL] [Abstract][Full Text] [Related]
7. Presteady-state kinetic evidence for a ring-opening activity in fructose-1,6-(bis)phosphate aldolase. Choi KH; Tolan DR J Am Chem Soc; 2004 Mar; 126(11):3402-3. PubMed ID: 15025449 [TBL] [Abstract][Full Text] [Related]
8. Chemoselective Henry Condensations Catalyzed by Artificial Carboligases. Garrabou X; Macdonald DS; Hilvert D Chemistry; 2017 May; 23(25):6001-6003. PubMed ID: 28070900 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase. Fushinobu S; Nishimasu H; Hattori D; Song HJ; Wakagi T Nature; 2011 Oct; 478(7370):538-41. PubMed ID: 21983966 [TBL] [Abstract][Full Text] [Related]
10. Design and Evolution of an Enzyme for the Asymmetric Michael Addition of Cyclic Ketones to Nitroolefins by Enamine Catalysis. Zhu Z; Hu Q; Fu Y; Tong Y; Zhou Z Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202404312. PubMed ID: 38783596 [TBL] [Abstract][Full Text] [Related]
11. Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase. Zeymer C; Zschoche R; Hilvert D J Am Chem Soc; 2017 Sep; 139(36):12541-12549. PubMed ID: 28783336 [TBL] [Abstract][Full Text] [Related]
17. A QM/MM study on the origin of retro-aldolase activity of a catalytic antibody. De Raffele D; Martí S; Moliner V Chem Commun (Camb); 2021 May; 57(43):5306-5309. PubMed ID: 33912877 [TBL] [Abstract][Full Text] [Related]
18. A lysine to arginine substitution at position 146 of rabbit aldolase A changes the rate-determining step to Schiff base formation. Morris AJ; Davenport RC; Tolan DR Protein Eng; 1996 Jan; 9(1):61-7. PubMed ID: 9053904 [TBL] [Abstract][Full Text] [Related]