These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2577732)

  • 21. The Haber-Weiss reaction and mechanisms of toxicity.
    Kehrer JP
    Toxicology; 2000 Aug; 149(1):43-50. PubMed ID: 10963860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional antioxidant activity of HBED iron chelator.
    Samuni AM; Afeworki M; Stein W; Yordanov AT; DeGraff W; Krishna MC; Mitchell JB; Brechbiel MW
    Free Radic Biol Med; 2001 Jan; 30(2):170-7. PubMed ID: 11163534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction.
    Mello Filho AC; Meneghini R
    Biochim Biophys Acta; 1984 Feb; 781(1-2):56-63. PubMed ID: 6320896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superoxide dismutation by low molecular weight Cu-complexes.
    Lengfelder E; Weser U
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():73-80. PubMed ID: 6265011
    [No Abstract]   [Full Text] [Related]  

  • 25. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of iron-sulfur clusters in in vivo hydroxyl radical production.
    Liochev SL
    Free Radic Res; 1996 Nov; 25(5):369-84. PubMed ID: 8902535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein.
    Lynch SM; Frei B
    J Lipid Res; 1993 Oct; 34(10):1745-53. PubMed ID: 8245725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of O2.- in the production of HO.: in vitro and in vivo.
    Liochev SI; Fridovich I
    Free Radic Biol Med; 1994 Jan; 16(1):29-33. PubMed ID: 8299992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of hydrogen peroxide by copper (II) complexes with some histidine-containing peptides and their SOD-like activities.
    Ueda J; Ozawa T; Miyazaki M; Fujiwara Y
    J Inorg Biochem; 1994 Aug; 55(2):123-30. PubMed ID: 8051540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition metals as catalysts of "autoxidation" reactions.
    Miller DM; Buettner GR; Aust SD
    Free Radic Biol Med; 1990; 8(1):95-108. PubMed ID: 2182396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferroxidase and radical scavenging activities.
    Gutteridge JM
    Chem Biol Interact; 1985 Dec; 56(1):113-20. PubMed ID: 3000633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese.
    Gutteridge JM; Bannister JV
    Biochem J; 1986 Feb; 234(1):225-8. PubMed ID: 3010953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron-mediated induction of sister-chromatid exchanges by hydrogen peroxide and superoxide anion.
    Larramendy M; Mello-Filho AC; Martins EA; Meneghini R
    Mutat Res; 1987 May; 178(1):57-63. PubMed ID: 3033488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Interaction between dinitrosyl iron complexes and intermediate products of oxidative stress].
    Shumaev KB; Gubkin AA; Gubkina SA; Gudkov LL; Sviriaeva IV; Timoshin AA; Topunov AF; Vanin AF; Ruuge EK
    Biofizika; 2006; 51(3):472-7. PubMed ID: 16808346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thiol-dependent metal-catalyzed oxidation of copper, zinc superoxide dismutase.
    Kwon OJ; Lee SM; Floyd RA; Park JW
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):249-56. PubMed ID: 9748611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superoxide and the production of oxidative DNA damage.
    Keyer K; Gort AS; Imlay JA
    J Bacteriol; 1995 Dec; 177(23):6782-90. PubMed ID: 7592468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biology of oxygen radicals.
    Fridovich I
    Science; 1978 Sep; 201(4359):875-80. PubMed ID: 210504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of chelating agents and amino acids in preventing free radical formation in bleaching systems.
    Hodes J; Sielaff P; Metz H; Kessler-Becker D; Gassenmeier T; Neubert RHH
    Free Radic Biol Med; 2018 Dec; 129():194-201. PubMed ID: 30243703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.