BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 25777325)

  • 1. Coassembly of nanorods and nanospheres in suspensions and in stratified films.
    Thérien-Aubin H; Lukach A; Pitch N; Kumacheva E
    Angew Chem Int Ed Engl; 2015 May; 54(19):5618-22. PubMed ID: 25777325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles.
    Thérien-Aubin H; Lukach A; Pitch N; Kumacheva E
    Nanoscale; 2015 Apr; 7(15):6612-8. PubMed ID: 25792388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals.
    Wang Z; Yuan Y; Hu J; Yang J; Feng F; Yu Y; Liu P; Men Y; Zhang J
    Carbohydr Polym; 2020 Oct; 245():116459. PubMed ID: 32718601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-crystalline assembly of spherical cellulose nanocrystals.
    Liu B; Cheng L; Yuan Y; Hu J; Zhou L; Zong L; Duan Y; Zhang J
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124738. PubMed ID: 37169056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals.
    Querejeta-Fernández A; Chauve G; Methot M; Bouchard J; Kumacheva E
    J Am Chem Soc; 2014 Mar; 136(12):4788-93. PubMed ID: 24588564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique.
    Chen Q; Liu P; Nan F; Zhou L; Zhang J
    Biomacromolecules; 2014 Nov; 15(11):4343-50. PubMed ID: 25300554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment.
    Hirai A; Inui O; Horii F; Tsuji M
    Langmuir; 2009 Jan; 25(1):497-502. PubMed ID: 19055323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge.
    Han J; Zhou C; Wu Y; Liu F; Wu Q
    Biomacromolecules; 2013 May; 14(5):1529-40. PubMed ID: 23544667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coassembly of Cellulose Nanocrystals and Neutral Polymers in Iridescent Chiral Nematic Films.
    Andrew LJ; Walters CM; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2023 Feb; 24(2):896-908. PubMed ID: 36720197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear-Coated Linear Birefringent and Chiral Cellulose Nanocrystal Films Prepared from Non-Sonicated Suspensions with Different Storage Time.
    Juárez-Rivera OR; Mauricio-Sánchez RA; Järrendahl K; Arwin H; Mendoza-Galván A
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process.
    Mu X; Gray DG
    Langmuir; 2014 Aug; 30(31):9256-60. PubMed ID: 25069681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral Nematic Liquid Crystal Behavior of Core-Shell Hybrid Rods Consisting of Chiral Cellulose Nanocrystals Dressed with Non-chiral Conformal Polymeric Skins.
    Dong Z; Ye Z; Zhang Z; Xia K; Zhang P
    Biomacromolecules; 2020 Jun; 21(6):2376-2390. PubMed ID: 32364722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustment of the Chiral Nematic Phase Properties of Cellulose Nanocrystals by Polymer Grafting.
    Azzam F; Heux L; Jean B
    Langmuir; 2016 May; 32(17):4305-12. PubMed ID: 27054465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors.
    Klockars KW; Tardy BL; Borghei M; Tripathi A; Greca LG; Rojas OJ
    Biomacromolecules; 2018 Jul; 19(7):2931-2943. PubMed ID: 29754482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color.
    Yao K; Meng Q; Bulone V; Zhou Q
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.