These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25778633)

  • 41. A detailed examination of substance P in pathologically graded cases of Huntington's disease.
    Beal MF; Ellison DW; Mazurek MF; Swartz KJ; Malloy JR; Bird ED; Martin JB
    J Neurol Sci; 1988 Mar; 84(1):51-61. PubMed ID: 2452859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motor learning by imagery is differentially affected in Parkinson's and Huntington's diseases.
    Yágüez L; Canavan AG; Lange HW; Hömberg V
    Behav Brain Res; 1999 Jul; 102(1-2):115-27. PubMed ID: 10403020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease.
    Glaser T; Andrejew R; Oliveira-Giacomelli Á; Ribeiro DE; Bonfim Marques L; Ye Q; Ren WJ; Semyanov A; Illes P; Tang Y; Ulrich H
    Neurosci Bull; 2020 Nov; 36(11):1299-1314. PubMed ID: 33026587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dopamine and Huntington's disease.
    Schwab LC; Garas SN; Drouin-Ouellet J; Mason SL; Stott SR; Barker RA
    Expert Rev Neurother; 2015 Apr; 15(4):445-58. PubMed ID: 25773746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resolving pathobiological mechanisms relating to Huntington disease: gait, balance, and involuntary movements in mice with targeted ablation of striatal D1 dopamine receptor cells.
    Kim HA; Jiang L; Madsen H; Parish CL; Massalas J; Smardencas A; O'Leary C; Gantois I; O'Tuathaigh C; Waddington JL; Ehrlich ME; Lawrence AJ; Drago J
    Neurobiol Dis; 2014 Feb; 62():323-37. PubMed ID: 24135007
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of the indirect pathway of the basal ganglia in perceptual decision making.
    Wei W; Rubin JE; Wang XJ
    J Neurosci; 2015 Mar; 35(9):4052-64. PubMed ID: 25740532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington's disease mice.
    Deng Y; Wang H; Joni M; Sekhri R; Reiner A
    J Comp Neurol; 2021 May; 529(7):1327-1371. PubMed ID: 32869871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination.
    Stocco A; Lebiere C; Anderson JR
    Psychol Rev; 2010 Apr; 117(2):541-74. PubMed ID: 20438237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.
    Baston C; Ursino M
    Comput Intell Neurosci; 2015; 2015():187417. PubMed ID: 26640481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Huntington's disease: molecular foundations and implications in the characterisation of the neuronal mechanisms responsible for linguistic processing].
    Benítez-Burraco A
    Rev Neurol; 2009 Jan 16-31; 48(2):75-84. PubMed ID: 19173205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Basal ganglia volume is strongly related to P3 event-related potential in premanifest Huntington's disease.
    Jurgens CK; van der Hiele K; Reijntjes RH; van de Wiel L; Witjes-Ané MN; van der Grond J; Roos RA; Middelkoop HA; van Dijk JG
    Eur J Neurol; 2011 Aug; 18(8):1105-8. PubMed ID: 21749577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Up-regulation of the isoenzymes MAO-A and MAO-B in the human basal ganglia and pons in Huntington's disease revealed by quantitative enzyme radioautography.
    Richards G; Messer J; Waldvogel HJ; Gibbons HM; Dragunow M; Faull RL; Saura J
    Brain Res; 2011 Jan; 1370():204-14. PubMed ID: 21075085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plastic abnormalities in experimental Huntington's disease.
    Di Filippo M; Tozzi A; Picconi B; Ghiglieri V; Calabresi P
    Curr Opin Pharmacol; 2007 Feb; 7(1):106-11. PubMed ID: 17071137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deficits in temporal processing correlate with clinical progression in Huntington's disease.
    Agostino PV; Gatto EM; Cesarini M; Etcheverry JL; Sanguinetti A; Golombek DA
    Acta Neurol Scand; 2017 Oct; 136(4):322-329. PubMed ID: 28052315
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.
    Baston C; Ursino M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6505-8. PubMed ID: 26737783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of striatal projection systems by dopamine.
    Gerfen CR; Surmeier DJ
    Annu Rev Neurosci; 2011; 34():441-66. PubMed ID: 21469956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cognitive deficits in animal models of basal ganglia disorders.
    Brooks SP; Dunnett SB
    Brain Res Bull; 2013 Mar; 92():29-40. PubMed ID: 22588013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A computational model of information processing in the frontal cortex and basal ganglia.
    Amos A
    J Cogn Neurosci; 2000 May; 12(3):505-19. PubMed ID: 10931775
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases.
    Gubellini P; Picconi B; Di Filippo M; Calabresi P
    Biochim Biophys Acta; 2010 Jan; 1802(1):151-61. PubMed ID: 19683569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of the basal ganglia in learning and memory: neuropsychological studies.
    Grahn JA; Parkinson JA; Owen AM
    Behav Brain Res; 2009 Apr; 199(1):53-60. PubMed ID: 19059285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.