These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25778684)

  • 1. The critical importance of gap modes in surface enhanced Raman scattering.
    Futamata M; Ishikura M; Iida C; Handa S
    Faraday Discuss; 2015; 178():203-20. PubMed ID: 25778684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closely adjacent gold nanoparticles linked by chemisorption of neutral rhodamine 123 molecules providing enormous SERS intensity.
    Yajima T; Yu Y; Futamata M
    Phys Chem Chem Phys; 2011 Jul; 13(27):12454-62. PubMed ID: 21655612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering.
    Futamata M; Maruyama Y
    Anal Bioanal Chem; 2007 May; 388(1):89-102. PubMed ID: 17333146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators.
    Siegfried T; Ekinci Y; Martin OJ; Sigg H
    Nano Lett; 2013; 13(11):5449-53. PubMed ID: 24111580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced Raman scattering.
    Kim K; Shin D; Kim KL; Shin KS
    Phys Chem Chem Phys; 2010 Apr; 12(15):3747-52. PubMed ID: 20358069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ionic surfactant-mediated Langmuir-Blodgett method to construct gold nanoparticle films for surface-enhanced Raman scattering.
    Pienpinijtham P; Han XX; Ekgasit S; Ozaki Y
    Phys Chem Chem Phys; 2012 Aug; 14(29):10132-9. PubMed ID: 22735494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence.
    Orendorff CJ; Gole A; Sau TK; Murphy CJ
    Anal Chem; 2005 May; 77(10):3261-6. PubMed ID: 15889917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy.
    Kim SM; Zhang W; Cunningham BT
    Opt Express; 2010 Mar; 18(5):4300-9. PubMed ID: 20389441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.