These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25778923)

  • 1. PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation.
    Luu O; Damm EW; Parent SE; Barua D; Smith TH; Wen JW; Lepage SE; Nagel M; Ibrahim-Gawel H; Huang Y; Bruce AE; Winklbauer R
    J Cell Biol; 2015 Mar; 208(6):839-56. PubMed ID: 25778923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation.
    Medina A; Swain RK; Kuerner KM; Steinbeisser H
    EMBO J; 2004 Aug; 23(16):3249-58. PubMed ID: 15272309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity.
    Chen X; Gumbiner BM
    J Cell Biol; 2006 Jul; 174(2):301-13. PubMed ID: 16847104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. xGit2 and xRhoGAP 11A regulate convergent extension and tissue separation in Xenopus gastrulation.
    Köster I; Jungwirth MS; Steinbeisser H
    Dev Biol; 2010 Aug; 344(1):26-35. PubMed ID: 20380829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm.
    Yamamoto A; Amacher SL; Kim SH; Geissert D; Kimmel CB; De Robertis EM
    Development; 1998 Sep; 125(17):3389-97. PubMed ID: 9693142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forces driving cell sorting in the amphibian embryo.
    Winklbauer R; Parent SE
    Mech Dev; 2017 Apr; 144(Pt A):81-91. PubMed ID: 27697520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation.
    Kim SH; Yamamoto A; Bouwmeester T; Agius E; Robertis EM
    Development; 1998 Dec; 125(23):4681-90. PubMed ID: 9806917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eph/ephrin signaling controls cell contacts and formation of a structurally asymmetrical tissue boundary in the Xenopus gastrula.
    Barua D; Winklbauer R
    Dev Biol; 2022 Oct; 490():73-85. PubMed ID: 35868403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nemo-like kinase 1 (Nlk1) and paraxial protocadherin (PAPC) cooperatively control Xenopus gastrulation through regulation of Wnt/planar cell polarity (PCP) signaling.
    Kumar R; Ciprianidis A; Theiß S; Steinbeißer H; Kaufmann LT
    Differentiation; 2017; 93():27-38. PubMed ID: 27875771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos.
    Kim SH; Jen WC; De Robertis EM; Kintner C
    Curr Biol; 2000 Jul; 10(14):821-30. PubMed ID: 10899001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ANR5, an FGF target gene product, regulates gastrulation in Xenopus.
    Chung HA; Yamamoto TS; Ueno N
    Curr Biol; 2007 Jun; 17(11):932-9. PubMed ID: 17475493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation-dependent ubiquitination of paraxial protocadherin (PAPC) controls gastrulation cell movements.
    Kai M; Ueno N; Kinoshita N
    PLoS One; 2015; 10(1):e0115111. PubMed ID: 25580871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Paraxial Protocadherin in Xenopus otic placode development.
    Hu RY; Xu P; Chen YL; Lou X; Ding X
    Biochem Biophys Res Commun; 2006 Jun; 345(1):239-47. PubMed ID: 16678122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin.
    Kraft B; Berger CD; Wallkamm V; Steinbeisser H; Wedlich D
    J Cell Biol; 2012 Aug; 198(4):695-709. PubMed ID: 22908314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sebox regulates mesoderm formation in early amphibian embryos.
    Chen G; Tan R; Tao Q
    Dev Dyn; 2015 Nov; 244(11):1415-26. PubMed ID: 26285158
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Chal J; Guillot C; Pourquié O
    Development; 2017 Feb; 144(4):664-676. PubMed ID: 28087631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balancing cell behavior at boundaries.
    Wilkinson DG
    J Cell Biol; 2015 Mar; 208(6):659-60. PubMed ID: 25778916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frizzled-7-dependent tissue separation in the Xenopus gastrula.
    Winklbauer R; Luu O
    Methods Mol Biol; 2008; 469():485-92. PubMed ID: 19109728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus paraxial protocadherin inhibits Wnt/β-catenin signalling via casein kinase 2β.
    Kietzmann A; Wang Y; Weber D; Steinbeisser H
    EMBO Rep; 2012 Feb; 13(2):129-34. PubMed ID: 22193776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.
    Chen X; Koh E; Yoder M; Gumbiner BM
    PLoS One; 2009 Dec; 4(12):e8411. PubMed ID: 20027292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.