These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25779096)

  • 1. Synergetic compositional and morphological effects for improved Na⁺ storage properties of Ni₃Co₆S₈-reduced graphene oxide composite powders.
    Choi SH; Kang YC
    Nanoscale; 2015 Apr; 7(14):6230-7. PubMed ID: 25779096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect.
    Park GD; Cho JS; Kang YC
    Nanoscale; 2015 Oct; 7(40):16781-8. PubMed ID: 26400766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.
    Park GD; Choi SH; Lee JK; Kang YC
    Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-Ion Storage Properties of FeS-Reduced Graphene Oxide Composite Powder with a Crumpled Structure.
    Lee SY; Kang YC
    Chemistry; 2016 Feb; 22(8):2769-74. PubMed ID: 26789137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries.
    Lee SM; Choi SH; Kang YC
    Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion.
    Park GD; Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16842-9. PubMed ID: 26186601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na-ion Storage Performances of FeSe(x) and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process.
    Park GD; Cho JS; Lee JK; Kang YC
    Sci Rep; 2016 Feb; 6():22432. PubMed ID: 26928312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron Telluride-Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties.
    Cho JS; Lee SY; Lee JK; Kang YC
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21343-9. PubMed ID: 27488678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoSe
    Park GD; Kim JH; Park SK; Kang YC
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10673-10683. PubMed ID: 28263546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior Lithium-Ion Storage Properties of Mesoporous CuO-Reduced Graphene Oxide Composite Powder Prepared by a Two-Step Spray-Drying Process.
    Park GD; Kang YC
    Chemistry; 2015 Jun; 21(25):9179-84. PubMed ID: 25974372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders prepared by a two-step spray drying process.
    Kim JH; Kang YC
    Nanoscale; 2014 May; 6(9):4789-95. PubMed ID: 24664313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries.
    Choi SH; Ko YN; Lee JK; Kang YC
    Sci Rep; 2014 Aug; 4():5786. PubMed ID: 25167932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber.
    Cho JS; Lee SY; Kang YC
    Sci Rep; 2016 Mar; 6():23338. PubMed ID: 26997350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flame spray pyrolysis for finding multicomponent nanomaterials with superior electrochemical properties in the CoO(x)-FeO(x) system for use in lithium-ion batteries.
    Kim JH; Lee JH; Kang YC
    Chem Asian J; 2014 Oct; 9(10):2826-30. PubMed ID: 25065898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical properties of hollow-structured MnS-carbon nanocomposite powders prepared by a one-pot spray pyrolysis process.
    Lee SM; Lee JK; Kang YC
    Chem Asian J; 2014 Feb; 9(2):590-5. PubMed ID: 24265162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.
    Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24694-702. PubMed ID: 26484615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.
    Peng S; Han X; Li L; Zhu Z; Cheng F; Srinivansan M; Adams S; Ramakrishna S
    Small; 2016 Mar; 12(10):1359-68. PubMed ID: 26763142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries.
    Lou Y; Liang J; Peng Y; Chen J
    Phys Chem Chem Phys; 2015 Apr; 17(14):8885-93. PubMed ID: 25742903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.