BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25779320)

  • 1. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy.
    Dhar N; Manina G
    Methods Mol Biol; 2015; 1285():241-56. PubMed ID: 25779320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy.
    Manina G; Dhar N
    Methods Mol Biol; 2021; 2314():205-229. PubMed ID: 34235654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic system for long-term time-lapse microscopy studies of mycobacteria.
    Golchin SA; Stratford J; Curry RJ; McFadden J
    Tuberculosis (Edinb); 2012 Nov; 92(6):489-96. PubMed ID: 22954584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments.
    Ollion J; Elez M; Robert L
    Nat Protoc; 2019 Nov; 14(11):3144-3161. PubMed ID: 31554957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.
    Klein J; Leupold S; Biegler I; Biedendieck R; Münch R; Jahn D
    Bioinformatics; 2012 Sep; 28(17):2276-7. PubMed ID: 22772947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy.
    Bamford RA; Smith A; Metz J; Glover G; Titball RW; Pagliara S
    BMC Biol; 2017 Dec; 15(1):121. PubMed ID: 29262826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.
    Luke CS; Selimkhanov J; Baumgart L; Cohen SE; Golden SS; Cookson NA; Hasty J
    ACS Synth Biol; 2016 Jan; 5(1):8-14. PubMed ID: 26332284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy.
    Young JW; Locke JC; Altinok A; Rosenfeld N; Bacarian T; Swain PS; Mjolsness E; Elowitz MB
    Nat Protoc; 2011 Dec; 7(1):80-8. PubMed ID: 22179594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using time-lapse fluorescence microscopy to study gene regulation.
    Zou F; Bai L
    Methods; 2019 Apr; 159-160():138-145. PubMed ID: 30599195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic positioning chamber for long-term live-cell imaging.
    Hanson L; Cui L; Xie C; Cui B
    Microsc Res Tech; 2011 Jun; 74(6):496-501. PubMed ID: 20936672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolating live cells after high-throughput, long-term, time-lapse microscopy.
    Luro S; Potvin-Trottier L; Okumus B; Paulsson J
    Nat Methods; 2020 Jan; 17(1):93-100. PubMed ID: 31768062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic cell-trapping device to study dynamic host-microbe interactions at the single-cell level.
    Toniolo C; Delincé M; McKinney JD
    Methods Cell Biol; 2018; 147():199-213. PubMed ID: 30165958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell, Time-Lapse Reactive Oxygen Species Detection in E. coli.
    Yang Z; Choi H
    Curr Protoc Cell Biol; 2018 Sep; 80(1):e60. PubMed ID: 30028910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live-cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus.
    Eijlander RT; Kuipers OP
    Appl Environ Microbiol; 2013 Sep; 79(18):5643-51. PubMed ID: 23851094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust algorithm for segmenting and tracking clustered cells in time-lapse fluorescent microscopy.
    Tarnawski W; Kurtcuoglu V; Lorek P; Bodych M; Rotter J; Muszkieta M; Piwowar Ł; Poulikakos D; Majkowski M; Ferrari A
    IEEE J Biomed Health Inform; 2013 Jul; 17(4):862-9. PubMed ID: 25055315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy.
    Dhouib R; Ducret A; Hubert P; Carrière F; Dukan S; Canaan S
    Biochim Biophys Acta; 2011 Apr; 1811(4):234-41. PubMed ID: 21238605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings.
    Blanchoud S; Nicolas D; Zoller B; Tidin O; Naef F
    Methods; 2015 Sep; 85():3-11. PubMed ID: 25934263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell migration in confinement: a micro-channel-based assay.
    Heuzé ML; Collin O; Terriac E; Lennon-Duménil AM; Piel M
    Methods Mol Biol; 2011; 769():415-34. PubMed ID: 21748692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Watching DNA Replication Inhibitors in Action: Exploiting Time-Lapse Microfluidic Microscopy as a Tool for Target-Drug Interaction Studies in
    Trojanowski D; Kołodziej M; Hołówka J; Müller R; Zakrzewska-Czerwińska J
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31383667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of live cell images of the Arabidopsis thaliana plant.
    Cunha A; Tarr PT; Roeder AH; Altinok A; Mjolsness E; Meyerowitz EM
    Methods Cell Biol; 2012; 110():285-323. PubMed ID: 22482954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.