These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25779385)

  • 1. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone.
    Luo W; Sankar M; Beale AM; He Q; Kiely CJ; Bruijnincx PC; Weckhuysen BM
    Nat Commun; 2015 Mar; 6():6540. PubMed ID: 25779385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media.
    Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G
    Front Chem; 2020; 8():221. PubMed ID: 32373576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni-Cu and Ni-Co-Modified Fly Ash Zeolite Catalysts for Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone.
    Popova M; Dimitrov M; Boycheva S; Dimitrov I; Ublekov F; Koseva N; Atanasova G; Karashanova D; Szegedi Á
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM
    ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production.
    Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L
    ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts.
    Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals.
    Dimitratos N; Lopez-Sanchez JA; Anthonykutty JM; Brett G; Carley AF; Tiruvalam RC; Herzing AA; Kiely CJ; Knight DW; Hutchings GJ
    Phys Chem Chem Phys; 2009 Jul; 11(25):4952-61. PubMed ID: 19562125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability.
    Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N
    Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex.
    Yi Y; Liu H; Xiao LP; Wang B; Song G
    ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Temperature Synthesis of Small-Sized Pt/Nb Alloy Catalysts on Carbon Supports for Hydrothermal Reactions.
    Xu SL; Shen SC; Xiong W; Zhao S; Zuo LJ; Wang L; Zeng WJ; Chu SQ; Chen P; Lin Y; Qian K; Huang W; Liang HW
    Inorg Chem; 2020 Nov; 59(21):15953-15961. PubMed ID: 33085476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine-promoted Ru
    Yang Y; Yang F; Wang H; Zhou B; Hao S
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Wu L; Song J; Zhou B; Wu T; Jiang T; Han B
    Chem Asian J; 2016 Oct; 11(19):2792-2796. PubMed ID: 27305341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.
    de Vries JG
    Chem Rec; 2016 Dec; 16(6):2783-2796. PubMed ID: 27763716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO
    Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S
    RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis.
    Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.