These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25779822)

  • 1. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial.
    Lewandowski W; Fruhnert M; Mieczkowski J; Rockstuhl C; Górecka E
    Nat Commun; 2015 Mar; 6():6590. PubMed ID: 25779822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture.
    Kowerdziej R; Olifierczuk M; Parka J
    Opt Express; 2018 Feb; 26(3):2443-2452. PubMed ID: 29401784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics.
    Molesky S; Dewalt CJ; Jacob Z
    Opt Express; 2013 Jan; 21 Suppl 1():A96-110. PubMed ID: 23389280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-tunable epsilon-near-zero behavior in a self-assembled liquid crystal - nanoparticle hybrid material.
    Bhardwaj A; Sridurai V; Bhat SA; Yelamaggad CV; Nair GG
    Nanoscale Adv; 2021 May; 3(9):2508-2515. PubMed ID: 36134163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial.
    Ling Y; Huang L; Hong W; Liu T; Luan J; Liu W; Lai J; Li H
    Nanoscale; 2018 Nov; 10(41):19517-19523. PubMed ID: 30320322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible frequency magnetic activity in silver nanocluster metamaterial.
    Tamma VA; Lee JH; Wu Q; Park W
    Appl Opt; 2010 Mar; 49(7):A11-7. PubMed ID: 20197797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal.
    Kowerdziej R; Wróbel J; Kula P
    Sci Rep; 2019 Dec; 9(1):20367. PubMed ID: 31889047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial.
    Zhang F; Chen L; Wang Y; Zhao Q; He X; Chen K
    Opt Express; 2014 Oct; 22(21):24908-13. PubMed ID: 25401524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct-tuning methods for semiconductor metamaterials.
    Min L; Wang W; Huang L; Ling Y; Liu T; Liu J; Luo C; Zeng Q
    Sci Rep; 2019 Nov; 9(1):17622. PubMed ID: 31772241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically Engineered Au-Ag Plasmonic Nanostructures to Realize Large Area and Flexible Metamaterials.
    Kim SJ; Seong M; Yun HW; Ahn J; Lee H; Oh SJ; Hong SH
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25652-25659. PubMed ID: 29979023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of Silica-Gold Core-Shell Microparticles by Electric Fields Toward Dynamically Tunable Metamaterials.
    Gao H; Xu Y; Yao K; Liu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14417-14422. PubMed ID: 33728895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.
    Kaipurath RM; Pietrzyk M; Caspani L; Roger T; Clerici M; Rizza C; Ciattoni A; Di Falco A; Faccio D
    Sci Rep; 2016 Jun; 6():27700. PubMed ID: 27292270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled, Nanostructured, Tunable Metamaterials via Spinodal Decomposition.
    Chen Z; Wang X; Qi Y; Yang S; Soares JA; Apgar BA; Gao R; Xu R; Lee Y; Zhang X; Yao J; Martin LW
    ACS Nano; 2016 Nov; 10(11):10237-10244. PubMed ID: 27934083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers.
    Ishikawa A; Tanaka T
    Sci Rep; 2015 Jul; 5():12570. PubMed ID: 26229011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of a fabricated self-assembled bottom-up bulk metamaterial.
    Mühlig S; Rockstuhl C; Yannopapas V; Bürgi T; Shalkevich N; Lederer F
    Opt Express; 2011 May; 19(10):9607-16. PubMed ID: 21643219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrifying photonic metamaterials for tunable nonlinear optics.
    Kang L; Cui Y; Lan S; Rodrigues SP; Brongersma ML; Cai W
    Nat Commun; 2014 Aug; 5():4680. PubMed ID: 25109813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative refraction in semiconductor metamaterials.
    Hoffman AJ; Alekseyev L; Howard SS; Franz KJ; Wasserman D; Podolskiy VA; Narimanov EE; Sivco DL; Gmachl C
    Nat Mater; 2007 Dec; 6(12):946-50. PubMed ID: 17934463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically Tunable Chiral Plasmonic Guest-Host Cellulose Films Weaved with Long-range Ordered Silver Nanowires.
    Chu G; Wang X; Chen T; Gao J; Gai F; Wang Y; Xu Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11863-70. PubMed ID: 25839237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metafluid exhibiting strong optical magnetism.
    Sheikholeslami SN; Alaeian H; Koh AL; Dionne JA
    Nano Lett; 2013 Sep; 13(9):4137-41. PubMed ID: 23919764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.