These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering. Tran VT; Saint-Martin J; Dollfus P Nanotechnology; 2015 Dec; 26(49):495202. PubMed ID: 26574344 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Heremans JP; Jovovic V; Toberer ES; Saramat A; Kurosaki K; Charoenphakdee A; Yamanaka S; Snyder GJ Science; 2008 Jul; 321(5888):554-7. PubMed ID: 18653890 [TBL] [Abstract][Full Text] [Related]
4. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties. Tran VT; Saint-Martin J; Dollfus P; Volz S Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598 [TBL] [Abstract][Full Text] [Related]
5. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice. Wang XM; Lu SS J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530 [TBL] [Abstract][Full Text] [Related]
9. Thermal transport and thermoelectric properties of beta-graphyne nanostructures. Ouyang T; Hu M Nanotechnology; 2014 Jun; 25(24):245401. PubMed ID: 24859889 [TBL] [Abstract][Full Text] [Related]
11. Thermal and thermoelectric properties of graphene. Xu Y; Li Z; Duan W Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791 [TBL] [Abstract][Full Text] [Related]
12. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Tan G; Zhao LD; Shi F; Doak JW; Lo SH; Sun H; Wolverton C; Dravid VP; Uher C; Kanatzidis MG J Am Chem Soc; 2014 May; 136(19):7006-17. PubMed ID: 24785377 [TBL] [Abstract][Full Text] [Related]
14. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Lin Y; Connell JW Nanoscale; 2012 Nov; 4(22):6908-39. PubMed ID: 23023445 [TBL] [Abstract][Full Text] [Related]
15. On the thermoelectric transport properties of graphyne by the first-principles method. Wang XM; Mo DC; Lu SS J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497 [TBL] [Abstract][Full Text] [Related]
16. An open canvas--2D materials with defects, disorder, and functionality. Zou X; Yakobson BI Acc Chem Res; 2015 Jan; 48(1):73-80. PubMed ID: 25514190 [TBL] [Abstract][Full Text] [Related]
17. 2D and 3D nanostructuring strategies for thermoelectric materials. Novak TG; Kim K; Jeon S Nanoscale; 2019 Nov; 11(42):19684-19699. PubMed ID: 31617541 [TBL] [Abstract][Full Text] [Related]
18. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons. Deng S; Li L; Guy OJ; Zhang Y Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445 [TBL] [Abstract][Full Text] [Related]
19. Modeling thermoelectric transport in organic materials. Wang D; Shi W; Chen J; Xi J; Shuai Z Phys Chem Chem Phys; 2012 Dec; 14(48):16505-20. PubMed ID: 23086525 [TBL] [Abstract][Full Text] [Related]
20. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons. Zhu L; Li R; Yao K Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]