These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 25780218)

  • 1. Personal reflections on RNA: an emphasis on trypanosomes.
    Stuart K
    RNA; 2015 Apr; 21(4):745-6. PubMed ID: 25780218
    [No Abstract]   [Full Text] [Related]  

  • 2. The evolution of salivarian trypanosomes.
    Stevens J; Gibson W
    Mem Inst Oswaldo Cruz; 1999; 94(2):225-8. PubMed ID: 10224533
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular characterization of Trypanosoma (Megatrypanum) spp. infecting cattle (Bos taurus), white-tailed deer (Odocoileus virginianus), and elk (Cervus elaphus canadensis) in the United States.
    Fisher AC; Schuster G; Cobb WJ; James AM; Cooper SM; Peréz de León AA; Holman PJ
    Vet Parasitol; 2013 Oct; 197(1-2):29-42. PubMed ID: 23683651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Illuminating the mechanism of monogenic antigen expression in trypanosomes.
    Ludzia P; Akiyoshi B
    Nat Rev Microbiol; 2021 Dec; 19(12):746. PubMed ID: 34588658
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification and characterization of trypanosome RNA-editing complex components.
    Stuart K; Panigrahi AK; Schnaufer A
    Methods Mol Biol; 2004; 265():273-91. PubMed ID: 15103079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRNA splicing in trypanosomes.
    Preußer C; Jaé N; Bindereif A
    Int J Med Microbiol; 2012 Oct; 302(4-5):221-4. PubMed ID: 22964417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae).
    Hamilton PB; Stevens JR; Gidley J; Holz P; Gibson WC
    Int J Parasitol; 2005 Apr; 35(4):431-43. PubMed ID: 15777919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeographical, ecological and biological patterns shown by nuclear (ssrRNA and gGAPDH) and mitochondrial (Cyt b) genes of trypanosomes of the subgenus Schizotrypanum parasitic in Brazilian bats.
    Cavazzana M; Marcili A; Lima L; da Silva FM; Junqueira AC; Veludo HH; Viola LB; Campaner M; Nunes VL; Paiva F; Coura JR; Camargo EP; Teixeira MM
    Int J Parasitol; 2010 Mar; 40(3):345-55. PubMed ID: 19766649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome.
    Michaeli S
    Future Microbiol; 2011 Apr; 6(4):459-74. PubMed ID: 21526946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental kinetoplastid-like 18S rRNA sequences and phylogenetic relationships among Trypanosomatidae: paraphyly of the genus Trypanosoma.
    Piontkivska H; Hughes AL
    Mol Biochem Parasitol; 2005 Nov; 144(1):94-9. PubMed ID: 16169099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary insights from bat trypanosomes: morphological, developmental and phylogenetic evidence of a new species, Trypanosoma (Schizotrypanum) erneyi sp. nov., in African bats closely related to Trypanosoma (Schizotrypanum) cruzi and allied species.
    Lima L; Silva FM; Neves L; Attias M; Takata CS; Campaner M; de Souza W; Hamilton PB; Teixeira MM
    Protist; 2012 Nov; 163(6):856-72. PubMed ID: 22277804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA interference in Trypanosoma brucei: a high-throughput engine for functional genomics in trypanosomatids?
    Balaña-Fouce R; Reguera RM
    Trends Parasitol; 2007 Aug; 23(8):348-51. PubMed ID: 17604223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel genotypes of Trypanosoma binneyi from wild platypuses (Ornithorhynchus anatinus) and identification of a leech as a potential vector.
    Paparini A; Macgregor J; Irwin PJ; Warren K; Ryan UM
    Exp Parasitol; 2014 Oct; 145():42-50. PubMed ID: 25045852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias.
    Clayton C; Shapira M
    Mol Biochem Parasitol; 2007 Dec; 156(2):93-101. PubMed ID: 17765983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanosoma rangeli: discrimination from Trypanosoma cruzi based on a variable domain from the large subunit ribosomal RNA gene.
    Souto RP; Vargas N; Zingales B
    Exp Parasitol; 1999 Apr; 91(4):306-14. PubMed ID: 10092474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18S rRNA gene sequences.
    Martin DS; Wright AD; Barta JR; Desser SS
    J Parasitol; 2002 Jun; 88(3):566-71. PubMed ID: 12099428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of short-term and long-term protocols for stabilization and preservation of RNA and DNA of Leishmania, Trypanosoma, and Plasmodium.
    Basiye FL; Schoone GJ; Beld M; Minnaar R; Ngeranwa JN; Wasunna MK; Schallig HD
    Diagn Microbiol Infect Dis; 2011 Jan; 69(1):66-73. PubMed ID: 21146716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-protein interactions in assembled editing complexes in trypanosomes.
    Cruz-Reyes J
    Methods Enzymol; 2007; 424():107-25. PubMed ID: 17662838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa.
    Kramer S
    Wiley Interdiscip Rev RNA; 2014; 5(2):263-84. PubMed ID: 24339376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of gene function in Trypanosoma brucei using RNA interference.
    Djikeng A; Shen S; Tschudi C; Ullu E
    Methods Mol Biol; 2004; 265():73-83. PubMed ID: 15103069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.