BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2578059)

  • 1. Comparative ontogenesis of brain tryptamine, serotonin, and tryptophan.
    Artigas F; Suñol C; Tusell JM; Martínez E; Gelpí E
    J Neurochem; 1985 Jan; 44(1):31-7. PubMed ID: 2578059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new mass fragmentographic method for the simultaneous analysis of tryptophan, tryptamine, indole-3-acetic acid, serotonin, and 5-hydroxyindole-3-acetic acid in the same sample of rat brain.
    Artigas F; Gelpí E
    Anal Biochem; 1979 Jan; 92(1):233-42. PubMed ID: 426283
    [No Abstract]   [Full Text] [Related]  

  • 3. Biogenic amines derived from tryptophan in systemic and cutaneous scleroderma.
    Stachów A; Jabłońska S; Skiendzielewska A
    Acta Derm Venereol; 1979; 59(1):1-5. PubMed ID: 84460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous levels of tryptophan, serotonin and 5-hydroxyindole acetic acid in the developing brain of the cat.
    Daszuta A; Gaudin-Chazal G; Faudon M; Barrit MC; Ternaux JP
    Neurosci Lett; 1979 Feb; 11(2):187-92. PubMed ID: 460687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatographic separation of tryptophan metabolites.
    Bakri M; Carlson JR
    Anal Biochem; 1970 Mar; 34():46-65. PubMed ID: 5309711
    [No Abstract]   [Full Text] [Related]  

  • 6. Tryptamine concentrations in areas of 5-hydroxytryptamine terminal innervation after electrolytic lesions of midbrain raphe nuclei.
    Juorio AV; Greenshaw AJ
    J Neurochem; 1985 Aug; 45(2):422-6. PubMed ID: 2409228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary disproportions of amino acids in the rat: effects on food intake, plasma and brain amino acids and brain serotonin.
    Tackman JM; Tews JK; Harper AE
    J Nutr; 1990 May; 120(5):521-33. PubMed ID: 1692873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postmortem and regional changes of serotonin, 5-hydroxyindoleacetic acid, and tryptophan in brain.
    McIntyre IM; Stanley M
    J Neurochem; 1984 Jun; 42(6):1588-92. PubMed ID: 6202839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative studies of brain 5-hydroxytryptamine and tryptamine.
    Knott PJ; Marsden CA; Curzon G
    Adv Biochem Psychopharmacol; 1974; 11(0):109-14. PubMed ID: 4602667
    [No Abstract]   [Full Text] [Related]  

  • 10. Brain levels of 5-hydroxytryptamine, tryptamine and 2-phenylethylamine in the rat after administration of N-cyanoethyltranylcypromine.
    Baker GB; Nazarali AJ; Coutts RT; Micetich RG; Hall TW
    Prog Neuropsychopharmacol Biol Psychiatry; 1984; 8(4-6):657-60. PubMed ID: 6531437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrospinal fluid (CSF) and brain monoamine metabolites in the developing rat pup.
    Shaywitz BA; Anderson GM; Cohen DJ
    Brain Res; 1985 Jan; 349(1-2):225-32. PubMed ID: 2580600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal development of serotonin binding protein in relation to other transmitter-related characteristics of central serotonergic neurons.
    Liu KP; Tamir H; Hsiung S; Adlersberg M; Gershon MD
    Brain Res; 1987 Mar; 429(1):31-41. PubMed ID: 2436719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of thiazolidine-4-carboxylic acid represents a main metabolic pathway of 5-hydroxytryptamine in rat brain.
    Susilo R; Rommelspacher H; Höfle G
    J Neurochem; 1989 Jun; 52(6):1793-800. PubMed ID: 2470854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid and simple method to determine the specific activities of serotonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophan in brain by HPLC with electrochemical detection.
    Bernstein MJ; Shea PA
    Neurochem Res; 1982 Jan; 7(1):79-85. PubMed ID: 6175915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass fragmentographic determination of 5-hydroxytryptamine and 5-hydroxyindole-3-acetic acid in brain tissue using deuterated internal standards.
    Beck O; Wiesel FA; Sedvall G
    J Chromatogr; 1977 Apr; 134(2):407-14. PubMed ID: 140179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maternal stress increases fetal brain and neonatal cerebral cortex 5-hydroxytryptamine synthesis in rats: a possible mechanism by which stress influences brain development.
    Peters DA
    Pharmacol Biochem Behav; 1990 Apr; 35(4):943-7. PubMed ID: 1693214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of tryptophan, serotonin and 5-hydroxyindoleacetic acid in rat brain by high-performance liquid chromatography using a weak acidic cation-exchange resin.
    Hori S; Ohtani K; Ohtani S; Kayanuma K; Ito T
    J Chromatogr; 1982 Aug; 231(1):161-5. PubMed ID: 6181085
    [No Abstract]   [Full Text] [Related]  

  • 18. Regional and subcellular changes in the concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the rat brain caused by hydrocortisone, DL- -methyl-tryptophan l-kynurenine and immobilization.
    Curzon G; Green AR
    Br J Pharmacol; 1971 Sep; 43(1):39-52. PubMed ID: 5136463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of an improved o-phthalaldehyde fluorometric method and high pressure liquid chromatography in the determination of brain 5-hydroxyindoles of rats treated with L-tryptophan and p-chlorophenyl-alanine.
    Curzon G; Kantamaneni BD; Tricklebank MD
    Br J Pharmacol; 1981 Jun; 73(2):555-61. PubMed ID: 6165422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorimetric determination of biogenic 5-hydroxy- and 5-methoxyindoles by high-performance liquid chromatography using perchloric acid as post-column reagent.
    Hojo T; Nakamura H; Tamura Z
    J Chromatogr; 1982 Sep; 247(1):157-64. PubMed ID: 6183283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.