BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25780953)

  • 1. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.
    Lehtoranta K; Vesala H; Koponen P; Korhonen S
    Environ Sci Technol; 2015 Apr; 49(7):4735-41. PubMed ID: 25780953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle emissions from ships: dependence on fuel type.
    Winnes H; Fridell E
    J Air Waste Manag Assoc; 2009 Dec; 59(12):1391-8. PubMed ID: 20066904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine.
    Hallquist ÅM; Fridell E; Westerlund J; Hallquist M
    Environ Sci Technol; 2013 Jan; 47(2):773-80. PubMed ID: 23163334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels.
    Jayaram V; Nigam A; Welch WA; Miller JW; Cocker DR
    J Air Waste Manag Assoc; 2011 Jan; 61(1):14-21. PubMed ID: 21305884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels.
    Book EK; Snow R; Long T; Fang T; Baldauf R
    J Air Waste Manag Assoc; 2015 Jun; 65(6):751-8. PubMed ID: 25976488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of selective catalytic reduction on exhaust particle formation over excess ammonia events.
    Amanatidis S; Ntziachristos L; Giechaskiel B; Bergmann A; Samaras Z
    Environ Sci Technol; 2014 Oct; 48(19):11527-34. PubMed ID: 25167537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric emissions from a passenger ferry with selective catalytic reduction.
    Nuszkowski J; Clark NN; Spencer TK; Carder DK; Gautam M; Balon TH; Moynihan PJ
    J Air Waste Manag Assoc; 2009 Jan; 59(1):18-30. PubMed ID: 19216184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.
    Thiruvengadam A; Besch MC; Carder DK; Oshinuga A; Gautam M
    Environ Sci Technol; 2012 Feb; 46(3):1907-13. PubMed ID: 22201285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.
    Johnson DR; Bedick CR; Clark NN; McKain DL
    Environ Sci Technol; 2009 May; 43(10):3959-63. PubMed ID: 19544914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.
    Geng P; Tan Q; Zhang C; Wei L; He X; Cao E; Jiang K
    Sci Total Environ; 2016 Dec; 572():467-475. PubMed ID: 27544351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle- and Gaseous Emissions from an LNG Powered Ship.
    Anderson M; Salo K; Fridell E
    Environ Sci Technol; 2015 Oct; 49(20):12568-75. PubMed ID: 26422536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico.
    Browning L; Hartley S; Bandemehr A; Gathright K; Miller W
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1093-101. PubMed ID: 23019823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the flow field and the chemical reaction coupling of selective catalytic reduction (SCR) system using an orthogonal experiment.
    Ma Q; Zhang D; Gan X
    PLoS One; 2019; 14(7):e0216138. PubMed ID: 31299048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of advanced aftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions.
    Herner JD; Hu S; Robertson WH; Huai T; Chang MC; Rieger P; Ayala A
    Environ Sci Technol; 2011 Mar; 45(6):2413-9. PubMed ID: 21322629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst.
    Feng X; Ge Y; Ma C; Tan J; Yu L; Li J; Wang X
    Sci Total Environ; 2014 Feb; 472():56-62. PubMed ID: 24291555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.
    Petitto C; Delahay G
    J Environ Sci (China); 2018 Mar; 65():246-252. PubMed ID: 29548395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combustion and emission characteristics for a marine low-speed diesel engine with high-pressure SCR system.
    Zhu Y; Xia C; Shreka M; Wang Z; Yuan L; Zhou S; Feng Y; Hou Q; Ahmed SA
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):12851-12865. PubMed ID: 30734255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of emission control areas on atmospheric pollutant emissions from major ocean-going ships entering the Shanghai Port, China.
    Wan Z; Zhang Q; Xu Z; Chen J; Wang Q
    Mar Pollut Bull; 2019 May; 142():525-532. PubMed ID: 31232333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Characteristics of Particle Emissions from a Medium Speed Ship Engine Fueled with Natural Gas and Low-Sulfur Liquid Fuels.
    Alanen J; Isotalo M; Kuittinen N; Simonen P; Martikainen S; Kuuluvainen H; Honkanen M; Lehtoranta K; Nyyssönen S; Vesala H; Timonen H; Aurela M; Keskinen J; Rönkkö T
    Environ Sci Technol; 2020 May; 54(9):5376-5384. PubMed ID: 32250108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particulate Mass and Nonvolatile Particle Number Emissions from Marine Engines Using Low-Sulfur Fuels, Natural Gas, or Scrubbers.
    Lehtoranta K; Aakko-Saksa P; Murtonen T; Vesala H; Ntziachristos L; Rönkkö T; Karjalainen P; Kuittinen N; Timonen H
    Environ Sci Technol; 2019 Mar; 53(6):3315-3322. PubMed ID: 30776893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.