These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25781460)

  • 1. Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics.
    Ingr M; Lange R; Halabalová V; Yehya A; Hrnčiřík J; Chevalier-Lucia D; Palmade L; Blayo C; Konvalinka J; Dumay E
    PLoS One; 2015; 10(3):e0119099. PubMed ID: 25781460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure induced structural changes and dimer destabilization of HIV-1 protease studied by molecular dynamics simulations.
    Kutálková E; Hrnčiřík J; Ingr M
    Phys Chem Chem Phys; 2014 Dec; 16(47):25906-15. PubMed ID: 25355562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates.
    Darke PL; Jordan SP; Hall DL; Zugay JA; Shafer JA; Kuo LC
    Biochemistry; 1994 Jan; 33(1):98-105. PubMed ID: 8286367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extensive thermodynamic characterization of the dimerization domain of the HIV-1 capsid protein.
    Lidón-Moya MC; Barrera FN; Bueno M; Pérez-Jiménez R; Sancho J; Mateu MG; Neira JL
    Protein Sci; 2005 Sep; 14(9):2387-404. PubMed ID: 16131662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-exploration of the 33-kDa protein from the spinach photosystem II particle.
    Ruan K; Xu C; Yu Y; Li J; Lange R; Bec N; Balny C
    Eur J Biochem; 2001 May; 268(9):2742-50. PubMed ID: 11322896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding and refolding of dimeric creatine kinase equilibrium and kinetic studies.
    Fan YX; Zhou JM; Kihara H; Tsou CL
    Protein Sci; 1998 Dec; 7(12):2631-41. PubMed ID: 9865958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface.
    Pietrucci F; Vargiu AV; Kranjc A
    Sci Rep; 2015 Dec; 5():18555. PubMed ID: 26692118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-jump studies of the folding/unfolding of trp repressor.
    Desai G; Panick G; Zein M; Winter R; Royer CA
    J Mol Biol; 1999 May; 288(3):461-75. PubMed ID: 10329154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding kinetics of tryptophan side chains in the dimerization and hinge regions of HIV-I protease tethered dimer by real time NMR spectroscopy.
    Panchal SC; Hosur RV
    Biochem Biophys Res Commun; 2000 Mar; 269(2):387-92. PubMed ID: 10708562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: persistent heterogeneity of a protein dimer.
    Rietveld AW; Ferreira ST
    Biochemistry; 1996 Jun; 35(24):7743-51. PubMed ID: 8672474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitor binding to the Phe53Trp mutant of HIV-1 protease promotes conformational changes detectable by spectrofluorometry.
    Rodríguez EJ; Debouck C; Deckman IC; Abu-Soud H; Raushel FM; Meek TD
    Biochemistry; 1993 Apr; 32(14):3557-63. PubMed ID: 8466899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer.
    Pargellis CA; Morelock MM; Graham ET; Kinkade P; Pav S; Lubbe K; Lamarre D; Anderson PC
    Biochemistry; 1994 Oct; 33(41):12527-34. PubMed ID: 7918476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein.
    Shao X; Hensley P; Matthews CR
    Biochemistry; 1997 Aug; 36(32):9941-9. PubMed ID: 9245428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.