These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25781579)

  • 1. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.
    Pfeiffer RM; Riedl R
    Stat Med; 2015 Aug; 34(18):2618-35. PubMed ID: 25781579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling for confounding via propensity score methods can result in biased estimation of the conditional AUC: A simulation study.
    Galadima HI; McClish DK
    Pharm Stat; 2019 Oct; 18(5):568-582. PubMed ID: 31111682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of disease risk scores, propensity scores, and traditional multivariable outcome regression in the presence of multiple confounders.
    Arbogast PG; Ray WA
    Am J Epidemiol; 2011 Sep; 174(5):613-20. PubMed ID: 21749976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study.
    Austin PC; Grootendorst P; Anderson GM
    Stat Med; 2007 Feb; 26(4):734-53. PubMed ID: 16708349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Disease Risk Score Matching in Nested Case-Control Studies: A Simulation Study.
    Desai RJ; Glynn RJ; Wang S; Gagne JJ
    Am J Epidemiol; 2016 May; 183(10):949-57. PubMed ID: 27189330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates.
    Schuster NA; Rijnhart JJM; Bosman LC; Twisk JWR; Klausch T; Heymans MW
    BMC Med Res Methodol; 2023 Jan; 23(1):11. PubMed ID: 36635655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misuse of Regression Adjustment for Additional Confounders Following Insufficient Propensity Score Balancing.
    Shinozaki T; Nojima M
    Epidemiology; 2019 Jul; 30(4):541-548. PubMed ID: 31166216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
    Schmidt AF; Klungel OH; Groenwold RH;
    Epidemiology; 2016 Jan; 27(1):133-42. PubMed ID: 26436519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution--a simulation study.
    Stürmer T; Rothman KJ; Avorn J; Glynn RJ
    Am J Epidemiol; 2010 Oct; 172(7):843-54. PubMed ID: 20716704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders.
    Cepeda MS; Boston R; Farrar JT; Strom BL
    Am J Epidemiol; 2003 Aug; 158(3):280-7. PubMed ID: 12882951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of propensity scores, disease risk scores, and regression in confounder adjustment for the safety of emerging treatment with group sequential monitoring.
    Xu S; Shetterly S; Cook AJ; Raebel MA; Goonesekera S; Shoaibi A; Roy J; Fireman B
    Pharmacoepidemiol Drug Saf; 2016 Apr; 25(4):453-61. PubMed ID: 26875591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling for continuous confounders in epidemiologic research.
    Brenner H; Blettner M
    Epidemiology; 1997 Jul; 8(4):429-34. PubMed ID: 9209859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confounding and regression adjustment in difference-in-differences studies.
    Zeldow B; Hatfield LA
    Health Serv Res; 2021 Oct; 56(5):932-941. PubMed ID: 33978956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias associated with using the estimated propensity score as a regression covariate.
    Hade EM; Lu B
    Stat Med; 2014 Jan; 33(1):74-87. PubMed ID: 23787715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude and direction of missing confounders had different consequences on treatment effect estimation in propensity score analysis.
    Nguyen TL; Collins GS; Spence J; Fontaine C; Daurès JP; Devereaux PJ; Landais P; Le Manach Y
    J Clin Epidemiol; 2017 Jul; 87():87-97. PubMed ID: 28412467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the E-value in the presence of bias amplification: a simulation study.
    Barrette E; Higuera L; Wherry K
    BMC Med Res Methodol; 2024 Mar; 24(1):79. PubMed ID: 38539082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of bias in propensity score-adjusted non-linear regression models.
    Wan F; Mitra N
    Stat Methods Med Res; 2018 Mar; 27(3):846-862. PubMed ID: 27095754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies.
    Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M
    BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal Studies 4: Matching Strategies to Evaluate Risk.
    James MT
    Methods Mol Biol; 2021; 2249():167-177. PubMed ID: 33871843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.