These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25781990)

  • 21. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition.
    Saha S; Raghava GP
    Genomics Proteomics Bioinformatics; 2006 Feb; 4(1):42-7. PubMed ID: 16689701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of non-classical secreted proteins using informative physicochemical properties.
    Hung CH; Huang HL; Hsu KT; Ho SJ; Ho SY
    Interdiscip Sci; 2010 Sep; 2(3):263-70. PubMed ID: 20658339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Immunomodulatory potential of an RNA sequence for designing non-toxic siRNAs and RNA-based vaccine adjuvants.
    Chaudhary K; Nagpal G; Dhanda SK; Raghava GP
    Sci Rep; 2016 Feb; 6():20678. PubMed ID: 26861761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-activity analysis of quorum-sensing signaling peptides from Streptococcus mutans.
    Syvitski RT; Tian XL; Sampara K; Salman A; Lee SF; Jakeman DL; Li YH
    J Bacteriol; 2007 Feb; 189(4):1441-50. PubMed ID: 16936029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting bacterial essential genes using only sequence composition information.
    Ning LW; Lin H; Ding H; Huang J; Rao N; Guo FB
    Genet Mol Res; 2014 Jun; 13(2):4564-72. PubMed ID: 25036505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.
    Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA
    Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.
    Chaudhary K; Kumar R; Singh S; Tuknait A; Gautam A; Mathur D; Anand P; Varshney GC; Raghava GP
    Sci Rep; 2016 Mar; 6():22843. PubMed ID: 26953092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico approach for predicting toxicity of peptides and proteins.
    Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; ; Raghava GP
    PLoS One; 2013; 8(9):e73957. PubMed ID: 24058508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NeuroPIpred: a tool to predict, design and scan insect neuropeptides.
    Agrawal P; Kumar S; Singh A; Raghava GPS; Singh IK
    Sci Rep; 2019 Mar; 9(1):5129. PubMed ID: 30914676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis and prediction of antibacterial peptides.
    Lata S; Sharma BK; Raghava GP
    BMC Bioinformatics; 2007 Jul; 8():263. PubMed ID: 17645800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remote homology detection incorporating the context of physicochemical properties.
    Bedoya O; Tischer I
    Comput Biol Med; 2014 Feb; 45():43-50. PubMed ID: 24480162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini.
    Wang Y; Guo Y; Pu X; Li M
    J Comput Aided Mol Des; 2017 Nov; 31(11):1029-1038. PubMed ID: 29127583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved method for predicting beta-turn using support vector machine.
    Zhang Q; Yoon S; Welsh WJ
    Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting quorum sensing peptides using stacked generalization ensemble with gradient boosting based feature selection.
    Sivaramakrishnan M; Suresh R; Ponraj K
    J Microbiol; 2022 Jul; 60(7):756-765. PubMed ID: 35731348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties.
    Sarda D; Chua GH; Li KB; Krishnan A
    BMC Bioinformatics; 2005 Jun; 6():152. PubMed ID: 15963230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of protein-interacting nucleotides in a RNA sequence using composition profile of tri-nucleotides.
    Panwar B; Raghava GP
    Genomics; 2015 Apr; 105(4):197-203. PubMed ID: 25640448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters.
    Dirix G; Monsieurs P; Dombrecht B; Daniels R; Marchal K; Vanderleyden J; Michiels J
    Peptides; 2004 Sep; 25(9):1425-40. PubMed ID: 15374646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico models for designing and discovering novel anticancer peptides.
    Tyagi A; Kapoor P; Kumar R; Chaudhary K; Gautam A; Raghava GP
    Sci Rep; 2013 Oct; 3():2984. PubMed ID: 24136089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.