These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 25782062)
1. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation. Boronat S; García-Santamarina S; Hidalgo E Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062 [TBL] [Abstract][Full Text] [Related]
2. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins. Boronat S; Domènech A; Hidalgo E Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838 [TBL] [Abstract][Full Text] [Related]
3. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Fedorova M; Bollineni RC; Hoffmann R Mass Spectrom Rev; 2014; 33(2):79-97. PubMed ID: 23832618 [TBL] [Abstract][Full Text] [Related]
4. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Gu L; Robinson RA Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938 [TBL] [Abstract][Full Text] [Related]
5. Redox Proteomes in Human Physiology and Disease Mechanisms. Mannaa A; Hanisch FG J Proteome Res; 2020 Jan; 19(1):1-17. PubMed ID: 31647248 [TBL] [Abstract][Full Text] [Related]
6. Mass spectrometry and redox proteomics: applications in disease. Butterfield DA; Gu L; Di Domenico F; Robinson RA Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952 [TBL] [Abstract][Full Text] [Related]
13. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. Colombo G; Clerici M; Giustarini D; Portinaro NM; Aldini G; Rossi R; Milzani A; Dalle-Donne I Mass Spectrom Rev; 2014; 33(3):183-218. PubMed ID: 24272816 [TBL] [Abstract][Full Text] [Related]
14. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. Møller IM; Rogowska-Wrzesinska A; Rao RS J Proteomics; 2011 Oct; 74(11):2228-42. PubMed ID: 21601020 [TBL] [Abstract][Full Text] [Related]
15. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843 [TBL] [Abstract][Full Text] [Related]
16. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. Baraibar MA; Ladouce R; Friguet B J Proteomics; 2013 Oct; 92():63-70. PubMed ID: 23689083 [TBL] [Abstract][Full Text] [Related]
17. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions. Bollineni RC; Hoffmann R; Fedorova M Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318 [TBL] [Abstract][Full Text] [Related]
18. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Shi Y; Carroll KS Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209 [TBL] [Abstract][Full Text] [Related]
19. [Interaction of reactive oxygen and nitrogen species with proteins]. Ponczek MB; Wachowicz B Postepy Biochem; 2005; 51(2):140-5. PubMed ID: 16209351 [TBL] [Abstract][Full Text] [Related]
20. Features and regulation of non-enzymatic post-translational modifications. Harmel R; Fiedler D Nat Chem Biol; 2018 Feb; 14(3):244-252. PubMed ID: 29443975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]