These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25782104)

  • 21. Modeling nuclear volume isotope effects in crystals.
    Schauble EA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17714-9. PubMed ID: 23650350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia).
    Perrot V; Pastukhov MV; Epov VN; Husted S; Donard OF; Amouroux D
    Environ Sci Technol; 2012 Jun; 46(11):5902-11. PubMed ID: 22545798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury stable isotope fractionation during reduction of Hg(II) by different microbial pathways.
    Kritee K; Blum JD; Barkay T
    Environ Sci Technol; 2008 Dec; 42(24):9171-7. PubMed ID: 19174888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of mercury isotope signatures in Yundang Lagoon, Xiamen, China, after long-term interventions.
    Huang S; Zhao Y; Lv S; Wang W; Wang W; Zhang Y; Huo Y; Sun X; Chen Y
    Chemosphere; 2021 Jun; 272():129716. PubMed ID: 33601205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment.
    Deonarine A; Hsu-Kim H
    Environ Sci Technol; 2009 Apr; 43(7):2368-73. PubMed ID: 19452888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways.
    Grégoire DS; Janssen SE; Lavoie NC; Tate MT; Poulain AJ
    Appl Environ Microbiol; 2021 Aug; 87(18):e0067821. PubMed ID: 34232740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.
    Jiskra M; Saile D; Wiederhold JG; Bourdon B; Björn E; Kretzschmar R
    Environ Sci Technol; 2014 Nov; 48(22):13207-17. PubMed ID: 25280234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tracing anthropogenic mercury in soils from Fe-Hg mining/smelting area: Isotopic and speciation insights.
    Vaňková M; Domingues Vieira AM; Ettler V; Vaněk A; Trubač J; Penížek V; Mihaljevič M
    Chemosphere; 2024 Jun; 357():142038. PubMed ID: 38621486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isotope effect of mercury diffusion in air.
    Koster van Groos PG; Esser BK; Williams RW; Hunt JR
    Environ Sci Technol; 2014; 48(1):227-33. PubMed ID: 24364380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variations in the isotopic composition of stable mercury isotopes in typical mangrove plants of the Jiulong estuary, SE China.
    Sun L; Lu B; Yuan D; Hao W; Zheng Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1459-1468. PubMed ID: 27783251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area.
    Baptista-Salazar C; Hintelmann H; Biester H
    Environ Sci Process Impacts; 2018 Apr; 20(4):621-631. PubMed ID: 29387859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission.
    Zhu W; Li Z; Li P; Yu B; Lin CJ; Sommar J; Feng X
    Environ Pollut; 2018 Nov; 242(Pt A):718-727. PubMed ID: 30029171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling mercury isotopic fractionation in the atmosphere.
    Song Z; Sun R; Zhang Y
    Environ Pollut; 2022 Aug; 307():119588. PubMed ID: 35688392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China.
    Yin R; Feng X; Meng B
    Environ Sci Technol; 2013 Mar; 47(5):2238-45. PubMed ID: 23363238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter.
    Mazrui NM; Seelen E; King'ondu CK; Thota S; Awino J; Rouge J; Zhao J; Mason RP
    Environ Sci Process Impacts; 2018 Apr; 20(4):642-656. PubMed ID: 29492487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Legacy Mercury Re-emission and Subsurface Migration at Contaminated Sites Constrained by Hg Isotopes and Chemical Speciation.
    Zhu W; Li Z; Li P; Sommar J; Fu X; Feng X; Yu B; Zhang W; Reis AT; Pereira E
    Environ Sci Technol; 2024 Mar; 58(12):5336-5346. PubMed ID: 38472090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br.
    Sun G; Sommar J; Feng X; Lin CJ; Ge M; Wang W; Yin R; Fu X; Shang L
    Environ Sci Technol; 2016 Sep; 50(17):9232-41. PubMed ID: 27501307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotopic fractionation of mercury induced by reduction and ethylation.
    Yang L; Sturgeon RE
    Anal Bioanal Chem; 2009 Jan; 393(1):377-85. PubMed ID: 18784919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes.
    Sherman LS; Blum JD; Keeler GJ; Demers JD; Dvonch JT
    Environ Sci Technol; 2012 Jan; 46(1):382-90. PubMed ID: 22103560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isotopic and chemical characteristics of mercury in organs and tissues of fish in a mercury-polluted lake: Evidence for fractionation of mercury isotopes by physiological processes.
    Jackson TA
    Environ Toxicol Chem; 2018 Feb; 37(2):515-529. PubMed ID: 28926123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.