These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25782159)
1. RNA-Seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. Liu X; Xu X; Li B; Wang X; Wang G; Li M Int J Mol Sci; 2015 Mar; 16(3):5975-89. PubMed ID: 25782159 [TBL] [Abstract][Full Text] [Related]
2. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Liu X; Bi B; Xu X; Li B; Tian S; Wang J; Zhang H; Wang G; Han Y; McElroy JS Theor Appl Genet; 2019 May; 132(5):1351-1361. PubMed ID: 30652203 [TBL] [Abstract][Full Text] [Related]
3. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). Wang J; Zhong X; Zhu K; Lv J; Lv X; Li F; Shi Z Environ Sci Pollut Res Int; 2018 Jul; 25(19):19012-19027. PubMed ID: 29721793 [TBL] [Abstract][Full Text] [Related]
4. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. Sun L; Xu H; Su W; Xue F; An S; Lu C; Wu R Plant Physiol Biochem; 2018 Aug; 129():101-108. PubMed ID: 29870861 [TBL] [Abstract][Full Text] [Related]
5. Responses of photosynthesis, antioxidant enzymes, and related gene expression to nicosulfuron stress in sweet maize (Zea mays L.). Wu ZX; Xu NW; Yang M; Li XL; Han JL; Lin XH; Yang Q; Lv GH; Wang J Environ Sci Pollut Res Int; 2022 May; 29(25):37248-37265. PubMed ID: 35032265 [TBL] [Abstract][Full Text] [Related]
6. Adaptation responses in C Wang J; Gao H; Guo Z; Meng Y; Yang M; Li X; Yang Q Ecotoxicol Environ Saf; 2021 May; 214():112096. PubMed ID: 33647854 [TBL] [Abstract][Full Text] [Related]
7. Nontarget site-based resistance to nicosulfuron and identification of candidate genes in Cucumis melo L. var. agrestis Naud. via RNA-Seq transcriptome analysis. Xu H; Cheng J; Leng Q; Liang S; Sun L; Su W; Xue F; Wu R Pestic Biochem Physiol; 2024 Jun; 202():105912. PubMed ID: 38879294 [TBL] [Abstract][Full Text] [Related]
8. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. Salas-Perez RA; Saski CA; Noorai RE; Srivastava SK; Lawton-Rauh AL; Nichols RL; Roma-Burgos N PLoS One; 2018; 13(4):e0195488. PubMed ID: 29672568 [TBL] [Abstract][Full Text] [Related]
9. Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.). Wang J; Zhong X; Li F; Shi Z Pestic Biochem Physiol; 2018 Feb; 145():108-117. PubMed ID: 29482726 [TBL] [Abstract][Full Text] [Related]
11. Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Petric I; Karpouzas DG; Bru D; Udikovic-Kolic N; Kandeler E; Djuric S; Martin-Laurent F Environ Sci Pollut Res Int; 2016 Mar; 23(5):4320-33. PubMed ID: 26517995 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553 [TBL] [Abstract][Full Text] [Related]
13. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.). Liu K; Cao Z; Pan X; Yu Y Environ Toxicol Chem; 2012 Aug; 31(8):1705-11. PubMed ID: 22619072 [TBL] [Abstract][Full Text] [Related]
14. Protective efficacy of phenoxyacetyl oxazolidine derivatives as safeners against nicosulfuron toxicity in maize. Zhang YY; Gao S; Hoang MT; Wang ZW; Ma X; Zhai Y; Li N; Zhao LX; Fu Y; Ye F Pest Manag Sci; 2021 Jan; 77(1):177-183. PubMed ID: 32652758 [TBL] [Abstract][Full Text] [Related]
15. Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta ( = Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs. Leite GL; de Paulo PD; Zanuncio JC; Tavares WS; Alvarenga AC; Dourado LR; Bispo EP; Soares MA J Environ Sci Health B; 2017 Jan; 52(1):70-76. PubMed ID: 27726483 [TBL] [Abstract][Full Text] [Related]
16. Nicosulfuron Plus Atrazine Herbicides and Trichogrammatidae (Hymenoptera) in No-Choice Test: Selectivity and Hormesis. Leite GLD; de Paulo PD; Zanuncio JC; Tavares WS; Alvarenga AC; Dourado LR; Bispo EPR; Soares MA Bull Environ Contam Toxicol; 2017 Nov; 99(5):589-594. PubMed ID: 28975358 [TBL] [Abstract][Full Text] [Related]
17. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903 [TBL] [Abstract][Full Text] [Related]
18. Expression and comparison of sweet corn CYP81A9s in relation to nicosulfuron sensitivity. Choe E; Williams MM Pest Manag Sci; 2020 Sep; 76(9):3012-3019. PubMed ID: 32248609 [TBL] [Abstract][Full Text] [Related]
19. Early detection of nicosulfuron toxicity and physiological prediction in maize using multi-branch deep learning models and hyperspectral imaging. Xiao T; Yang L; Zhang D; Cui T; Zhang X; Deng Y; Li H; Wang H J Hazard Mater; 2024 Aug; 474():134723. PubMed ID: 38815392 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic response of Pseudomonas nicosulfuronedens LAM1902 to the sulfonylurea herbicide nicosulfuron. Li M; Li Q; Yao J; Sunahara G; Duran R; Zhang Q; Ruan Z Sci Rep; 2022 Aug; 12(1):13656. PubMed ID: 35953636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]