BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25782703)

  • 21. Valorization of bamboo by γ-valerolactone/acid/water to produce digestible cellulose, degraded sugars and lignin.
    Li SX; Li MF; Yu P; Fan YM; Shou JN; Sun RC
    Bioresour Technol; 2017 Apr; 230():90-96. PubMed ID: 28161625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cascade upgrading of γ-valerolactone to biofuels.
    Yan K; Lafleur T; Wu X; Chai J; Wu G; Xie X
    Chem Commun (Camb); 2015 Apr; 51(32):6984-7. PubMed ID: 25797827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.
    Mostofian B; Cai CM; Smith MD; Petridis L; Cheng X; Wyman CE; Smith JC
    J Am Chem Soc; 2016 Aug; 138(34):10869-78. PubMed ID: 27482599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite.
    Lin L; Sheveleva AM; da Silva I; Parlett CMA; Tang Z; Liu Y; Fan M; Han X; Carter JH; Tuna F; McInnes EJL; Cheng Y; Daemen LL; Rudić S; Ramirez-Cuesta AJ; Tang CC; Yang S
    Nat Mater; 2020 Jan; 19(1):86-93. PubMed ID: 31844281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A broad specificity β-propeller enzyme from Rhodopseudomonas palustris that hydrolyzes many lactones including γ-valerolactone.
    Hall BW; Bingman CA; Fox BG; Noguera DR; Donohue TJ
    J Biol Chem; 2023 Jan; 299(1):102782. PubMed ID: 36502920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions.
    Yang T; Zhou YH; Zhu SZ; Pan H; Huang YB
    ChemSusChem; 2017 Oct; 10(20):4066-4079. PubMed ID: 28856818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening.
    van Rossum G; Zhao W; Castellvi Barnes M; Lange JP; Kersten SR
    ChemSusChem; 2014 Jan; 7(1):253-9. PubMed ID: 24265195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent effects in acid-catalyzed biomass conversion reactions.
    Mellmer MA; Sener C; Gallo JM; Luterbacher JS; Alonso DM; Dumesic JA
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11872-5. PubMed ID: 25214063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.
    Lian J; Chen S; Zhou S; Wang Z; O'Fallon J; Li CZ; Garcia-Perez M
    Bioresour Technol; 2010 Dec; 101(24):9688-99. PubMed ID: 20708928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts.
    Du XL; Bi QY; Liu YM; Cao Y; Fan KN
    ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory.
    Quesada-Medina J; López-Cremades FJ; Olivares-Carrillo P
    Bioresour Technol; 2010 Nov; 101(21):8252-60. PubMed ID: 20580226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of lignins from aqueous-ionic liquid mixtures by organic solvents.
    Xin Q; Pfeiffer K; Prausnitz JM; Clark DS; Blanch HW
    Biotechnol Bioeng; 2012 Feb; 109(2):346-52. PubMed ID: 22095406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings.
    Sathitsuksanoh N; Zhu Z; Ho TJ; Bai MD; Zhang YH
    Bioresour Technol; 2010 Jul; 101(13):4926-9. PubMed ID: 19854047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical Recovery of γ-Valerolactone/Water Biorefinery.
    Lê HQ; Pokki JP; Borrega M; Uusi-Kyyny P; Alopaeus V; Sixta H
    Ind Eng Chem Res; 2018 Nov; 57(44):15147-15158. PubMed ID: 30449950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green solvents extraction-based detoxification to enhance the enzymatic hydrolysis of steam-exploded lignocellulosic biomass and recover bioactive compounds.
    Cañadas R; Martín-Sampedro R; González-Miquel M; González EJ; Ballesteros I; Eugenio ME; Ibarra D
    J Environ Manage; 2023 Oct; 344():118448. PubMed ID: 37413728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dilute acid catalyzed fractionation and sugar production from bamboo shoot shell in γ-valerolactone/water medium.
    Qing Q; Gao X; Wang P; Guo Q; Xu Z; Wang L
    RSC Adv; 2018 May; 8(31):17527-17534. PubMed ID: 35539230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime.
    Xu J; Cheng JJ
    Bioresour Technol; 2011 Feb; 102(4):3861-8. PubMed ID: 21194931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic Solvent Effects in Biomass Conversion Reactions.
    Shuai L; Luterbacher J
    ChemSusChem; 2016 Jan; 9(2):133-55. PubMed ID: 26676907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence-nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass.
    Bozell JJ; O'Lenick CJ; Warwick S
    J Agric Food Chem; 2011 Sep; 59(17):9232-42. PubMed ID: 21793554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.