BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25782703)

  • 41. Performances of Several Solvents on the Cleavage of Inter- and Intramolecular Linkages of Lignin in Corncob Residue.
    Zhang H; Liu X; Li J; Jiang Z; Hu C
    ChemSusChem; 2018 May; 11(9):1494-1504. PubMed ID: 29542869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts.
    Du XL; He L; Zhao S; Liu YM; Cao Y; He HY; Fan KN
    Angew Chem Int Ed Engl; 2011 Aug; 50(34):7815-9. PubMed ID: 21732502
    [No Abstract]   [Full Text] [Related]  

  • 43. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solvent effects on the wood delignification with sustainable solvents.
    Millán D; González-Turen F; Perez-Recabarren J; Gonzalez-Ponce C; Rezende MC; Da Costa Lopes AM
    Int J Biol Macromol; 2022 Jun; 211():490-498. PubMed ID: 35569683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media.
    Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G
    Front Chem; 2020; 8():221. PubMed ID: 32373576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers.
    Wu Z; Zhao X; Zhang J; Li X; Zhang Y; Wang F
    Bioresour Technol; 2019 Apr; 278():187-194. PubMed ID: 30703636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings.
    Chen Z; Jacoby WA; Wan C
    Bioresour Technol; 2019 May; 279():281-286. PubMed ID: 30738354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.
    Yang M; Li W; Liu B; Li Q; Xing J
    Bioresour Technol; 2010 Jul; 101(13):4884-8. PubMed ID: 20061139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures.
    Sener C; Motagamwala AH; Alonso DM; Dumesic JA
    ChemSusChem; 2018 Jul; 11(14):2321-2331. PubMed ID: 29776010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.
    Elliot SG; Tolborg S; Sádaba I; Taarning E; Meier S
    ChemSusChem; 2017 Jul; 10(14):2990-2996. PubMed ID: 28627762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. γ-Valerolactone as Sustainable and Low-Toxic Solvent for Electrical Double Layer Capacitors.
    Teoh KS; Melchiorre M; Kreth FA; Bothe A; Köps L; Ruffo F; Balducci A
    ChemSusChem; 2023 Jan; 16(1):e202201845. PubMed ID: 36378225
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of lignocellulose derived phenolic monomers by headspace solid-phase microextraction and gas chromatography.
    Kolb M; Schieder D; Faulstich M; Sieber V
    J Chromatogr A; 2013 Sep; 1307():144-57. PubMed ID: 23932028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scope and Limitations of γ-Valerolactone (GVL) as a Green Solvent to be Used with Base for Fmoc Removal in Solid Phase Peptide Synthesis.
    Kumar A; Sharma A; de la Torre BG; Albericio F
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31694279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass.
    Zhao Y; Fu Y; Guo QX
    Bioresour Technol; 2012 Jun; 114():740-4. PubMed ID: 22507905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst.
    Zhang L; Yu H; Wang P; Li Y
    Bioresour Technol; 2014 Jan; 151():355-60. PubMed ID: 24262845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioethanol potential of Eucalyptus obliqua sawdust using gamma-valerolactone fractionation.
    Trevorah RM; Huynh T; Vancov T; Othman MZ
    Bioresour Technol; 2018 Feb; 250():673-682. PubMed ID: 29220812
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent.
    Fu D; Farag S; Chaouki J; Jessop PG
    Bioresour Technol; 2014 Feb; 154():101-8. PubMed ID: 24384316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.