These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 25783037)

  • 1. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes.
    Dahlman I; Sinha I; Gao H; Brodin D; Thorell A; Rydén M; Andersson DP; Henriksson J; Perfilyev A; Ling C; Dahlman-Wright K; Arner P
    Int J Obes (Lond); 2015 Jun; 39(6):910-9. PubMed ID: 25783037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women.
    Arner P; Sinha I; Thorell A; Rydén M; Dahlman-Wright K; Dahlman I
    Clin Epigenetics; 2015; 7(1):93. PubMed ID: 26351548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss.
    Benton MC; Johnstone A; Eccles D; Harmon B; Hayes MT; Lea RA; Griffiths L; Hoffman EP; Stubbs RS; Macartney-Coxson D
    Genome Biol; 2015 Jan; 16(1):8. PubMed ID: 25651499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals.
    Macartney-Coxson D; Benton MC; Blick R; Stubbs RS; Hagan RD; Langston MA
    Clin Epigenetics; 2017; 9():48. PubMed ID: 28473875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epigenetic signature of systemic insulin resistance in obese women.
    Arner P; Sahlqvist AS; Sinha I; Xu H; Yao X; Waterworth D; Rajpal D; Loomis AK; Freudenberg JM; Johnson T; Thorell A; Näslund E; Ryden M; Dahlman I
    Diabetologia; 2016 Nov; 59(11):2393-2405. PubMed ID: 27535281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.
    Keller M; Hopp L; Liu X; Wohland T; Rohde K; Cancello R; Klös M; Bacos K; Kern M; Eichelmann F; Dietrich A; Schön MR; Gärtner D; Lohmann T; Dreßler M; Stumvoll M; Kovacs P; DiBlasio AM; Ling C; Binder H; Blüher M; Böttcher Y
    Mol Metab; 2017 Jan; 6(1):86-100. PubMed ID: 28123940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of diabetogenic adipose morphology.
    Kerr AG; Sinha I; Dadvar S; Arner P; Dahlman I
    Mol Metab; 2019 Jul; 25():159-167. PubMed ID: 31031182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs.
    Pietiläinen KH; Ismail K; Järvinen E; Heinonen S; Tummers M; Bollepalli S; Lyle R; Muniandy M; Moilanen E; Hakkarainen A; Lundbom J; Lundbom N; Rissanen A; Kaprio J; Ollikainen M
    Int J Obes (Lond); 2016 Apr; 40(4):654-61. PubMed ID: 26499446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients.
    Crujeiras AB; Diaz-Lagares A; Sandoval J; Milagro FI; Navas-Carretero S; Carreira MC; Gomez A; Hervas D; Monteiro MP; Casanueva FF; Esteller M; Martinez JA
    Sci Rep; 2017 Feb; 7():41903. PubMed ID: 28211912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of IGFBP2 DNA methylation and mRNA expression in visceral and subcutaneous adipose tissues of obese subjects.
    Zhang X; Gu HF; Frystyk J; Efendic S; Brismar K; Thorell A
    Growth Horm IGF Res; 2019 Apr; 45():31-36. PubMed ID: 30921666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.
    Bollepalli S; Kaye S; Heinonen S; Kaprio J; Rissanen A; Virtanen KA; Pietiläinen KH; Ollikainen M
    Int J Obes (Lond); 2018 Mar; 42(3):412-423. PubMed ID: 28978976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation.
    Ortega FJ; Moreno-Navarrete JM; Pardo G; Sabater M; Hummel M; Ferrer A; Rodriguez-Hermosa JI; Ruiz B; Ricart W; Peral B; Fernández-Real JM
    PLoS One; 2010 Feb; 5(2):e9022. PubMed ID: 20126310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic modifications underlie the differential adipogenic potential of preadipocytes derived from human subcutaneous fat tissue.
    Kubota Y; Nagano H; Kosaka K; Ogata H; Nakayama A; Yokoyama M; Murata K; Akita S; Kuriyama M; Furuyama N; Kuroda M; Tanaka T; Mitsukawa N
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C596-C606. PubMed ID: 34319829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant overexpression of HOTAIR inhibits abdominal adipogenesis through remodelling of genome-wide DNA methylation and transcription.
    Kuo FC; Huang YC; Yen MR; Lee CH; Hsu KF; Yang HY; Wu LW; Lu CH; Hsu YJ; Chen PY
    Mol Metab; 2022 Jun; 60():101473. PubMed ID: 35292404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.
    Kosaka K; Kubota Y; Adachi N; Akita S; Sasahara Y; Kira T; Kuroda M; Mitsukawa N; Bujo H; Satoh K
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C322-9. PubMed ID: 27251439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation within the I.4 promoter region correlates with CYPl19A1 gene expression in human ex vivo mature omental and subcutaneous adipocytes.
    Lewis JR; McNab TJ; Liew LJ; Tan J; Hudson P; Wang JZ; Prince RL
    BMC Med Genet; 2013 Aug; 14():87. PubMed ID: 24128150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression.
    Sonne SB; Yadav R; Yin G; Dalgaard MD; Myrmel LS; Gupta R; Wang J; Madsen L; Kajimura S; Kristiansen K
    Adipocyte; 2017 Apr; 6(2):124-133. PubMed ID: 28481699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects.
    Crujeiras AB; Diaz-Lagares A; Moreno-Navarrete JM; Sandoval J; Hervas D; Gomez A; Ricart W; Casanueva FF; Esteller M; Fernandez-Real JM
    Transl Res; 2016 Dec; 178():13-24.e5. PubMed ID: 27477082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone responsive Spot 14 increases during differentiation of human adipocytes and its expression is down-regulated in obese subjects.
    Ortega FJ; Vazquez-Martin A; Moreno-Navarrete JM; Bassols J; Rodriguez-Hermosa J; Gironés J; Ricart W; Peral B; Tinahones FJ; Fruhbeck G; Menendez JA; Fernández-Real JM
    Int J Obes (Lond); 2010 Mar; 34(3):487-99. PubMed ID: 20029374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes.
    Barajas-Olmos F; Centeno-Cruz F; Zerrweck C; Imaz-Rosshandler I; Martínez-Hernández A; Cordova EJ; Rangel-Escareño C; Gálvez F; Castillo A; Maydón H; Campos F; Maldonado-Pintado DG; Orozco L
    BMC Med Genet; 2018 Feb; 19(1):28. PubMed ID: 29466957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.