BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 25783037)

  • 1. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes.
    Dahlman I; Sinha I; Gao H; Brodin D; Thorell A; Rydén M; Andersson DP; Henriksson J; Perfilyev A; Ling C; Dahlman-Wright K; Arner P
    Int J Obes (Lond); 2015 Jun; 39(6):910-9. PubMed ID: 25783037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women.
    Arner P; Sinha I; Thorell A; Rydén M; Dahlman-Wright K; Dahlman I
    Clin Epigenetics; 2015; 7(1):93. PubMed ID: 26351548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss.
    Benton MC; Johnstone A; Eccles D; Harmon B; Hayes MT; Lea RA; Griffiths L; Hoffman EP; Stubbs RS; Macartney-Coxson D
    Genome Biol; 2015 Jan; 16(1):8. PubMed ID: 25651499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals.
    Macartney-Coxson D; Benton MC; Blick R; Stubbs RS; Hagan RD; Langston MA
    Clin Epigenetics; 2017; 9():48. PubMed ID: 28473875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epigenetic signature of systemic insulin resistance in obese women.
    Arner P; Sahlqvist AS; Sinha I; Xu H; Yao X; Waterworth D; Rajpal D; Loomis AK; Freudenberg JM; Johnson T; Thorell A; Näslund E; Ryden M; Dahlman I
    Diabetologia; 2016 Nov; 59(11):2393-2405. PubMed ID: 27535281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.
    Keller M; Hopp L; Liu X; Wohland T; Rohde K; Cancello R; Klös M; Bacos K; Kern M; Eichelmann F; Dietrich A; Schön MR; Gärtner D; Lohmann T; Dreßler M; Stumvoll M; Kovacs P; DiBlasio AM; Ling C; Binder H; Blüher M; Böttcher Y
    Mol Metab; 2017 Jan; 6(1):86-100. PubMed ID: 28123940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of diabetogenic adipose morphology.
    Kerr AG; Sinha I; Dadvar S; Arner P; Dahlman I
    Mol Metab; 2019 Jul; 25():159-167. PubMed ID: 31031182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs.
    Pietiläinen KH; Ismail K; Järvinen E; Heinonen S; Tummers M; Bollepalli S; Lyle R; Muniandy M; Moilanen E; Hakkarainen A; Lundbom J; Lundbom N; Rissanen A; Kaprio J; Ollikainen M
    Int J Obes (Lond); 2016 Apr; 40(4):654-61. PubMed ID: 26499446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients.
    Crujeiras AB; Diaz-Lagares A; Sandoval J; Milagro FI; Navas-Carretero S; Carreira MC; Gomez A; Hervas D; Monteiro MP; Casanueva FF; Esteller M; Martinez JA
    Sci Rep; 2017 Feb; 7():41903. PubMed ID: 28211912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of IGFBP2 DNA methylation and mRNA expression in visceral and subcutaneous adipose tissues of obese subjects.
    Zhang X; Gu HF; Frystyk J; Efendic S; Brismar K; Thorell A
    Growth Horm IGF Res; 2019 Apr; 45():31-36. PubMed ID: 30921666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.
    Bollepalli S; Kaye S; Heinonen S; Kaprio J; Rissanen A; Virtanen KA; Pietiläinen KH; Ollikainen M
    Int J Obes (Lond); 2018 Mar; 42(3):412-423. PubMed ID: 28978976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation.
    Ortega FJ; Moreno-Navarrete JM; Pardo G; Sabater M; Hummel M; Ferrer A; Rodriguez-Hermosa JI; Ruiz B; Ricart W; Peral B; Fernández-Real JM
    PLoS One; 2010 Feb; 5(2):e9022. PubMed ID: 20126310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic modifications underlie the differential adipogenic potential of preadipocytes derived from human subcutaneous fat tissue.
    Kubota Y; Nagano H; Kosaka K; Ogata H; Nakayama A; Yokoyama M; Murata K; Akita S; Kuriyama M; Furuyama N; Kuroda M; Tanaka T; Mitsukawa N
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C596-C606. PubMed ID: 34319829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant overexpression of HOTAIR inhibits abdominal adipogenesis through remodelling of genome-wide DNA methylation and transcription.
    Kuo FC; Huang YC; Yen MR; Lee CH; Hsu KF; Yang HY; Wu LW; Lu CH; Hsu YJ; Chen PY
    Mol Metab; 2022 Jun; 60():101473. PubMed ID: 35292404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.
    Kosaka K; Kubota Y; Adachi N; Akita S; Sasahara Y; Kira T; Kuroda M; Mitsukawa N; Bujo H; Satoh K
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C322-9. PubMed ID: 27251439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation within the I.4 promoter region correlates with CYPl19A1 gene expression in human ex vivo mature omental and subcutaneous adipocytes.
    Lewis JR; McNab TJ; Liew LJ; Tan J; Hudson P; Wang JZ; Prince RL
    BMC Med Genet; 2013 Aug; 14():87. PubMed ID: 24128150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression.
    Sonne SB; Yadav R; Yin G; Dalgaard MD; Myrmel LS; Gupta R; Wang J; Madsen L; Kajimura S; Kristiansen K
    Adipocyte; 2017 Apr; 6(2):124-133. PubMed ID: 28481699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects.
    Crujeiras AB; Diaz-Lagares A; Moreno-Navarrete JM; Sandoval J; Hervas D; Gomez A; Ricart W; Casanueva FF; Esteller M; Fernandez-Real JM
    Transl Res; 2016 Dec; 178():13-24.e5. PubMed ID: 27477082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone responsive Spot 14 increases during differentiation of human adipocytes and its expression is down-regulated in obese subjects.
    Ortega FJ; Vazquez-Martin A; Moreno-Navarrete JM; Bassols J; Rodriguez-Hermosa J; Gironés J; Ricart W; Peral B; Tinahones FJ; Fruhbeck G; Menendez JA; Fernández-Real JM
    Int J Obes (Lond); 2010 Mar; 34(3):487-99. PubMed ID: 20029374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes.
    Barajas-Olmos F; Centeno-Cruz F; Zerrweck C; Imaz-Rosshandler I; Martínez-Hernández A; Cordova EJ; Rangel-Escareño C; Gálvez F; Castillo A; Maydón H; Campos F; Maldonado-Pintado DG; Orozco L
    BMC Med Genet; 2018 Feb; 19(1):28. PubMed ID: 29466957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.