BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 25783232)

  • 21. Transcriptional dysregulation in the ureteric bud causes multicystic dysplastic kidney by branching morphogenesis defect.
    Guo Q; Tripathi P; Manson SR; Austin PF; Chen F
    J Urol; 2015 May; 193(5 Suppl):1784-90. PubMed ID: 25301096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nephron induction revisited: from caps to condensates.
    Sariola H
    Curr Opin Nephrol Hypertens; 2002 Jan; 11(1):17-21. PubMed ID: 11753082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stem cells in the embryonic kidney.
    Nishinakamura R
    Kidney Int; 2008 Apr; 73(8):913-7. PubMed ID: 18200005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis.
    Sakurai H; Bush KT; Nigam SK
    Development; 2001 Sep; 128(17):3283-93. PubMed ID: 11546745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney.
    Yu J; Carroll TJ; Rajagopal J; Kobayashi A; Ren Q; McMahon AP
    Development; 2009 Jan; 136(1):161-71. PubMed ID: 19060336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of hyaluronic acid size and concentration on branching morphogenesis and tubule differentiation in developing kidney culture systems: potential applications to engineering of renal tissues.
    Rosines E; Schmidt HJ; Nigam SK
    Biomaterials; 2007 Nov; 28(32):4806-17. PubMed ID: 17706761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early defect in branching morphogenesis of the ureteric bud in induced nephron deficit.
    Gilbert T; Cibert C; Moreau E; Géraud G; Merlet-Bénichou C
    Kidney Int; 1996 Sep; 50(3):783-95. PubMed ID: 8872952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development.
    Kobayashi A; Kwan KM; Carroll TJ; McMahon AP; Mendelsohn CL; Behringer RR
    Development; 2005 Jun; 132(12):2809-23. PubMed ID: 15930111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. H-Ras, R-Ras, and TC21 differentially regulate ureteric bud cell branching morphogenesis.
    Pozzi A; Coffa S; Bulus N; Zhu W; Chen D; Chen X; Mernaugh G; Su Y; Cai S; Singh A; Brissova M; Zent R
    Mol Biol Cell; 2006 Apr; 17(4):2046-56. PubMed ID: 16467383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An epithelial precursor is regulated by the ureteric bud and by the renal stroma.
    Yang J; Blum A; Novak T; Levinson R; Lai E; Barasch J
    Dev Biol; 2002 Jun; 246(2):296-310. PubMed ID: 12051817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beta1-integrin is required for kidney collecting duct morphogenesis and maintenance of renal function.
    Wu W; Kitamura S; Truong DM; Rieg T; Vallon V; Sakurai H; Bush KT; Vera DR; Ross RS; Nigam SK
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F210-7. PubMed ID: 19439520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions.
    Lin Y; Zhang S; Tuukkanen J; Peltoketo H; Pihlajaniemi T; Vainio S
    Int J Dev Biol; 2003 Feb; 47(1):3-13. PubMed ID: 12653247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential.
    Mae SI; Ryosaka M; Sakamoto S; Matsuse K; Nozaki A; Igami M; Kabai R; Watanabe A; Osafune K
    Cell Rep; 2020 Jul; 32(4):107963. PubMed ID: 32726627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney.
    Nagalakshmi VK; Ren Q; Pugh MM; Valerius MT; McMahon AP; Yu J
    Kidney Int; 2011 Feb; 79(3):317-30. PubMed ID: 20944551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stromal cells mediate retinoid-dependent functions essential for renal development.
    Mendelsohn C; Batourina E; Fung S; Gilbert T; Dodd J
    Development; 1999 Mar; 126(6):1139-48. PubMed ID: 10021334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros.
    Barasch J; Yang J; Qiao J; Tempst P; Erdjument-Bromage H; Leung W; Oliver JA
    J Clin Invest; 1999 May; 103(9):1299-307. PubMed ID: 10225973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transitional differentiation patterns of principal and intercalated cells during renal collecting duct development.
    Aigner J; Kloth S; Jennings ML; Minuth WW
    Epithelial Cell Biol; 1995; 4(3):121-30. PubMed ID: 8971487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BMP receptor ALK3 controls collecting system development.
    Hartwig S; Bridgewater D; Di Giovanni V; Cain J; Mishina Y; Rosenblum ND
    J Am Soc Nephrol; 2008 Jan; 19(1):117-24. PubMed ID: 18178801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation.
    Horster MF; Braun GS; Huber SM
    Physiol Rev; 1999 Oct; 79(4):1157-91. PubMed ID: 10508232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The origin of the mammalian kidney: implications for recreating the kidney in vitro.
    Takasato M; Little MH
    Development; 2015 Jun; 142(11):1937-47. PubMed ID: 26015537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.