BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 25783380)

  • 1. ANG-1 TIE-2 and BMPR signalling defects are not seen in the nitrofen model of pulmonary hypertension and congenital diaphragmatic hernia.
    Corbett HJ; Connell MG; Fernig DG; Losty PD; Jesudason EC
    PLoS One; 2012; 7(4):e35364. PubMed ID: 22539968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell transcriptomic profiling of microvascular endothelial cell heterogeneity in congenital diaphragmatic hernia.
    Robertson JO; Bazeley P; Erzurum SC; Asosingh K
    Sci Rep; 2023 Jun; 13(1):9851. PubMed ID: 37330615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary vasculature development in congenital diaphragmatic hernia: a novel automated quantitative imaging analysis.
    Aydın E; Durmuş F; Torlak N; Oria M; Güler Bayazıt N; Öztürk Işık E; Aslanyürek B; Peiro JL
    Pediatr Surg Int; 2024 Mar; 40(1):81. PubMed ID: 38498203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-amniotic Sildenafil Treatment Modulates Vascular Smooth Muscle Cell Phenotype in the Nitrofen Model of Congenital Diaphragmatic Hernia.
    Okolo FC; Zhang G; Rhodes J; Potoka DA
    Sci Rep; 2018 Dec; 8(1):17668. PubMed ID: 30518769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights using spatial transcriptomics of the distal lung in congenital diaphragmatic hernia.
    Lingappan K; Olutoye OO; Cantu A; Cantu Gutierrez ME; Cortes-Santiago N; Hammond JD; Gilley J; Quintero JR; Li H; Polverino F; Gleghorn JP; Keswani SG
    Am J Physiol Lung Cell Mol Physiol; 2023 Oct; 325(4):L477-L486. PubMed ID: 37605849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial-to-Mesenchymal Transition in Human and Murine Models of Congenital Diaphragmatic Hernia.
    Gilley J; Hanneman SK; Ottosen MJ; Shivanna B; Keswani S
    Neonatology; 2024 Apr; ():1-7. PubMed ID: 38588643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of the receptor for advanced glycation end-products in the auditory cortex of rats with noise-induced hearing loss.
    Lee CH; Kim KW; Lee DH; Lee SM; Kim SY
    BMC Neurosci; 2021 May; 22(1):38. PubMed ID: 34020590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the congenital diaphragmatic hernia model in C57BL/6J fetal mice: a step toward lineage tracing experiments.
    Doktor F; Figueira RL; Khalaj K; Ijaz A; Lacher M; Blundell M; Antounians L; Zani A
    Pediatr Surg Int; 2023 Nov; 39(1):296. PubMed ID: 37981587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescuing lung development through embryonic inhibition of histone acetylation.
    Stokes G; Li Z; Talaba N; Genthe W; Brix MB; Pham B; Wienhold MD; Sandok G; Hernan R; Wynn J; Tang H; Tabima DM; Rodgers A; Hacker TA; Chesler NC; Zhang P; Murad R; Yuan JX; Shen Y; Chung WK; McCulley DJ
    Sci Transl Med; 2024 Jan; 16(732):eadc8930. PubMed ID: 38295182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice.
    Marulanda K; Mercel A; Gillis DC; Sun K; Gambarian M; Roark J; Weiss J; Tsihlis ND; Karver MR; Centeno SR; Peters EB; Clemons TD; Stupp SI; McLean SE; Kibbe MR
    Adv Healthc Mater; 2021 Jul; 10(13):e2100302. PubMed ID: 34061473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid-beta mediates the receptor of advanced glycation end product-induced pro-inflammatory response via toll-like receptor 4 signaling pathway in retinal ganglion cell line RGC-5.
    Lee JJ; Wang PW; Yang IH; Wu CL; Chuang JH
    Int J Biochem Cell Biol; 2015 Jul; 64():1-10. PubMed ID: 25783987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways.
    Prantner D; Nallar S; Vogel SN
    FASEB J; 2020 Dec; 34(12):15659-15674. PubMed ID: 33131091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Activin Receptor-Like Kinase 1 Signaling in the Pulmonary Vasculature of Experimental Diaphragmatic Hernia.
    Hofmann AD; Zimmer J; Takahashi T; Gosemann JH; Puri P
    Eur J Pediatr Surg; 2016 Feb; 26(1):106-11. PubMed ID: 26540443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased CaSR and TRPC6 pulmonary vascular expression in the nitrofen-induced model of congenital diaphragmatic hernia.
    Nakamura H; Zimmer J; Lim T; Puri P
    Pediatr Surg Int; 2018 Feb; 34(2):211-215. PubMed ID: 28983729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of serotonin-receptor-2a and serotonin transporter expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.
    Hofmann AD; Friedmacher F; Hunziker M; Takahashi H; Duess JW; Gosemann JH; Puri P
    J Pediatr Surg; 2014 Jun; 49(6):871-4; discussion 874-5. PubMed ID: 24888825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling.
    Montalva L; Antounians L; Zani A
    Pediatr Res; 2019 May; 85(6):754-768. PubMed ID: 30780153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of microRNAs in Congenital Diaphragmatic Hernia-Associated Pulmonary Hypertension.
    Pugnaloni F; Capolupo I; Patel N; Giliberti P; Dotta A; Bagolan P; Kipfmueller F
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased pulmonary vascular expression of receptor for advanced glycation end products (RAGE) in experimental congenital diaphragmatic hernia.
    Hofmann AD; Friedmacher F; Takahashi T; Gosemann JH; Puri P
    J Pediatr Surg; 2015 May; 50(5):746-9. PubMed ID: 25783380
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.