BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 25783632)

  • 1. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation.
    Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG
    Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Li4 Ti5 O12 coated with N-doped carbon from ionic liquids for Li-ion batteries.
    Zhao L; Hu YS; Li H; Wang Z; Chen L
    Adv Mater; 2011 Mar; 23(11):1385-8. PubMed ID: 21400601
    [No Abstract]   [Full Text] [Related]  

  • 3. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.
    Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H
    ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries.
    Ventosa E; Skoumal M; Vazquez FJ; Flox C; Arbiol J; Morante JR
    ChemSusChem; 2015 May; 8(10):1737-44. PubMed ID: 25892099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li
    Chen Z; Li H; Wu L; Lu X; Zhang X
    Chem Rec; 2018 Mar; 18(3):350-380. PubMed ID: 29024397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesocarbon Microbeads Boost the Electrochemical Performances of LiFePO
    Cheng Z; Wang C; Zhu Y; Wang C; Jiang X; Qian Z; Chen B; Yang J
    ChemSusChem; 2022 Apr; 15(8):e202102475. PubMed ID: 35243804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical protonated titanate nanostructures for lithium-ion batteries.
    Zhang Y; Tang Y; Yin S; Zeng Z; Zhang H; Li CM; Dong Z; Chen Z; Chen X
    Nanoscale; 2011 Oct; 3(10):4074-7. PubMed ID: 21853212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling TiNb2 O7 as an insertion anode for lithium ion capacitors with high energy and power density.
    Aravindan V; Sundaramurthy J; Jain A; Kumar PS; Ling WC; Ramakrishna S; Srinivasan MP; Madhavi S
    ChemSusChem; 2014 Jul; 7(7):1858-63. PubMed ID: 24961606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries.
    Jo MR; Nam KM; Lee Y; Song K; Park JT; Kang YM
    Chem Commun (Camb); 2011 Nov; 47(41):11474-6. PubMed ID: 21952411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries.
    Jo MR; Jung YS; Kang YM
    Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection.
    Kim JG; Park MS; Hwang SM; Heo YU; Liao T; Sun Z; Park JH; Kim KJ; Jeong G; Kim YJ; Kim JH; Dou SX
    ChemSusChem; 2014 May; 7(5):1451-7. PubMed ID: 24700792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aqueous zinc-ion battery based on copper hexacyanoferrate.
    Trócoli R; La Mantia F
    ChemSusChem; 2015 Feb; 8(3):481-5. PubMed ID: 25510850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia-annealed TiO2 as a negative electrode material in li-ion batteries: N doping or oxygen deficiency?
    Ventosa E; Xia W; Klink S; La Mantia F; Mei B; Muhler M; Schuhmann W
    Chemistry; 2013 Oct; 19(42):14194-9. PubMed ID: 24026902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries.
    Li N; Zhou G; Fang R; Li F; Cheng HM
    Nanoscale; 2013 Sep; 5(17):7780-4. PubMed ID: 23860518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.