These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25784091)

  • 1. Controlled formation of fluorescent metalloporphyrin-containing coordination polymer particles from seed structures by designed shape-transformation reactions.
    Sun Y; Li X; Caravella A; Gao R
    Chemistry; 2015 Apr; 21(18):6682-5. PubMed ID: 25784091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Transformation Reactions of Photocatalytic Metalloporphyrin-Containing Coordination Polymer Particles from Seed Structures.
    Sun Y; Yoo B
    ChemistryOpen; 2015 Aug; 4(4):438-42. PubMed ID: 26478836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porphyrin assemblies via a surfactant-assisted method: from nanospheres to nanofibers with tunable length.
    Guo P; Chen P; Liu M
    Langmuir; 2012 Nov; 28(44):15482-90. PubMed ID: 23072662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexation-induced transition of nanorod to network aggregates: alternate porphyrin and cyclodextrin arrays.
    Liu Y; Ke CF; Zhang HY; Cui J; Ding F
    J Am Chem Soc; 2008 Jan; 130(2):600-5. PubMed ID: 18095681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance H₂O₂ vapor sensing.
    Guo P; Zhao G; Chen P; Lei B; Jiang L; Zhang H; Hu W; Liu M
    ACS Nano; 2014 Apr; 8(4):3402-11. PubMed ID: 24654963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse porous nanodiscs with fluorescent and crystalline wall structure.
    Bai F; Wu H; Haddad RE; Sun Z; Schmitt SK; Skocypec VR; Fan H
    Chem Commun (Camb); 2010 Jul; 46(27):4941-3. PubMed ID: 20517568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-metal coordination by novel bisporphyrin architectures.
    Barbe JM; Habermeyer B; Khoury T; Gros CP; Richard P; Chen P; Kadish KM
    Inorg Chem; 2010 Oct; 49(19):8929-40. PubMed ID: 20822173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous one-dimensional nanostructures through confined cooperative self-assembly.
    Bai F; Sun Z; Wu H; Haddad RE; Coker EN; Huang JY; Rodriguez MA; Fan H
    Nano Lett; 2011 Dec; 11(12):5196-200. PubMed ID: 22082076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality.
    Qiu Y; Chen P; Liu M
    J Am Chem Soc; 2010 Jul; 132(28):9644-52. PubMed ID: 20578772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core.
    Imaoka T; Tanaka R; Arimoto S; Sakai M; Fujii M; Yamamoto K
    J Am Chem Soc; 2005 Oct; 127(40):13896-905. PubMed ID: 16201811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Virus-Like Nanorods by Coassembly of a Triblock Polypeptide and Reversible Coordination Polymers.
    Hernandez-Garcia A; Velders AH; Stuart MA; de Vries R; van Lent JW; Wang J
    Chemistry; 2017 Jan; 23(2):239-243. PubMed ID: 27727480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N,N-di(2-pyridylmethyl)amino-modified porphyrinato zinc complexes. The "ON-OFF" fluorescence sensor for Fe3+.
    Chen Y; Jiang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():418-23. PubMed ID: 23973588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Two-point" assembling of Zn(II) and Co(II) metalloporphyrins derivatized with a crown ether substituent in Langmuir and Langmuir-Blodgett films.
    Noworyta K; Marczak R; Tylenda R; Sobczak JW; Chitta R; Kutner W; D'Souza F
    Langmuir; 2007 Feb; 23(5):2555-68. PubMed ID: 17309209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinoneimido complexes of a metalloporphyrin: Isolation, X-ray crystal structures, and DFT calculations.
    Tsui WM; Huang JS; Tong GS; Kui SC; Che CM; Zhu N
    Chem Asian J; 2010 Apr; 5(4):759-63. PubMed ID: 20127788
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis and photodynamic activity of unsymmetrical A3B tetraarylporphyrins functionalized with l-glutamate and their Zn(II) and Cu(II) metal complex derivatives.
    Arredondo-Espinoza EU; López-Cortina ST; Ramírez-Cabrera MA; Balderas-Rentería I
    Biomed Pharmacother; 2016 Aug; 82():327-36. PubMed ID: 27470370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis and characterizations of copper-zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu-ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies.
    Zhang Z; Li X; Zhao Q; Ke J; Shi Y; Ndokoye P; Wang L
    J Colloid Interface Sci; 2014 Oct; 432():229-35. PubMed ID: 25086717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear dichroism of Zn(II)-tetrapyridylporphine aggregates formed at the toluene/water interface.
    Takechi H; Adachi K; Monjushiro H; Watarai H
    Langmuir; 2008 May; 24(9):4722-8. PubMed ID: 18376889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct synthesis of magnesium porphine via 1-formyldipyrromethane.
    Dogutan DK; Ptaszek M; Lindsey JS
    J Org Chem; 2007 Jun; 72(13):5008-11. PubMed ID: 17518498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and efficient hypervalent iodine(III)-mediated meso-functionalization of porphyrins.
    Shen DM; Liu C; Chen XG; Chen QY
    J Org Chem; 2009 Jan; 74(1):206-11. PubMed ID: 19053580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled fabrication of fluorescent barcode nanorods.
    Li X; Wang T; Zhang J; Zhu D; Zhang X; Ning Y; Zhang H; Yang B
    ACS Nano; 2010 Aug; 4(8):4350-60. PubMed ID: 20731421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.