BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 25784162)

  • 1. An expanded regulatory network temporally controls Candida albicans biofilm formation.
    Fox EP; Bui CK; Nett JE; Hartooni N; Mui MC; Andes DR; Nobile CJ; Johnson AD
    Mol Microbiol; 2015 Jun; 96(6):1226-39. PubMed ID: 25784162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Identification of Biofilm-Specific Proteolysis in Candida albicans.
    Winter MB; Salcedo EC; Lohse MB; Hartooni N; Gulati M; Sanchez H; Takagi J; Hube B; Andes DR; Johnson AD; Craik CS; Nobile CJ
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.
    Chandra J; Kuhn DM; Mukherjee PK; Hoyer LL; McCormick T; Ghannoum MA
    J Bacteriol; 2001 Sep; 183(18):5385-94. PubMed ID: 11514524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.
    Lin CH; Kabrawala S; Fox EP; Nobile CJ; Johnson AD; Bennett RJ
    PLoS Pathog; 2013; 9(4):e1003305. PubMed ID: 23637598
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Uppuluri P; Acosta Zaldívar M; Anderson MZ; Dunn MJ; Berman J; Lopez Ribot JL; Köhler JR
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131358
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p.
    Nobile CJ; Mitchell AP
    Curr Biol; 2005 Jun; 15(12):1150-5. PubMed ID: 15964282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and regulation of single- and multi-species Candida albicans biofilms.
    Lohse MB; Gulati M; Johnson AD; Nobile CJ
    Nat Rev Microbiol; 2018 Jan; 16(1):19-31. PubMed ID: 29062072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR.
    Nailis H; Coenye T; Van Nieuwerburgh F; Deforce D; Nelis HJ
    BMC Mol Biol; 2006 Aug; 7():25. PubMed ID: 16889665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of heat shock proteins in Candida albicans biofilm formation.
    Becherelli M; Tao J; Ryder NS
    J Mol Microbiol Biotechnol; 2013; 23(6):396-400. PubMed ID: 23942459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines.
    Chandra J; McCormick TS; Imamura Y; Mukherjee PK; Ghannoum MA
    Infect Immun; 2007 May; 75(5):2612-20. PubMed ID: 17339351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns.
    García-Sánchez S; Aubert S; Iraqui I; Janbon G; Ghigo JM; d'Enfert C
    Eukaryot Cell; 2004 Apr; 3(2):536-45. PubMed ID: 15075282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory role of glycerol in Candida albicans biofilm formation.
    Desai JV; Bruno VM; Ganguly S; Stamper RJ; Mitchell KF; Solis N; Hill EM; Xu W; Filler SG; Andes DR; Fanning S; Lanni F; Mitchell AP
    mBio; 2013 Apr; 4(2):e00637-12. PubMed ID: 23572557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics for the analysis of the Candida albicans biofilm lifestyle.
    Thomas DP; Bachmann SP; Lopez-Ribot JL
    Proteomics; 2006 Nov; 6(21):5795-804. PubMed ID: 17001605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans.
    Kakade P; Sadhale P; Sanyal K; Nagaraja V
    Sci Rep; 2016 Aug; 6():31124. PubMed ID: 27498700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation.
    Chen HF; Lan CY
    PLoS One; 2015; 10(6):e0129903. PubMed ID: 26087243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance.
    Younes S; Bahnan W; Dimassi HI; Khalaf RA
    Microbiol Res; 2011 Jul; 166(5):430-6. PubMed ID: 20869222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans.
    Bonhomme J; Chauvel M; Goyard S; Roux P; Rossignol T; d'Enfert C
    Mol Microbiol; 2011 May; 80(4):995-1013. PubMed ID: 21414038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo.
    Li F; Svarovsky MJ; Karlsson AJ; Wagner JP; Marchillo K; Oshel P; Andes D; Palecek SP
    Eukaryot Cell; 2007 Jun; 6(6):931-9. PubMed ID: 17416898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans.
    Srivastava A; Sircaik S; Husain F; Thomas E; Ror S; Rastogi S; Alim D; Bapat P; Andes DR; Nobile CJ; Panwar SL
    Cell Microbiol; 2017 Dec; 19(12):. PubMed ID: 28745020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.