These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 25784162)

  • 81. Application of proper orthogonal decomposition for evaluation of coherent structures and energy contents in microbial biofilms.
    Montelongo-Jauregui D; Ajisafe A; Jabra-Rizk MA; Sultan AS
    J Microbiol Methods; 2022 Mar; 194():106420. PubMed ID: 35101438
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions.
    Li F; Palecek SP
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1193-1203. PubMed ID: 18375812
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans.
    Mourer T; El Ghalid M; Pehau-Arnaudet G; Kauffmann B; Loquet A; Brûlé S; Cabral V; d'Enfert C; Bachellier-Bassi S
    NPJ Biofilms Microbiomes; 2023 Jan; 9(1):6. PubMed ID: 36697414
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evolution of the complex transcription network controlling biofilm formation in
    Mancera E; Nocedal I; Hammel S; Gulati M; Mitchell KF; Andes DR; Nobile CJ; Butler G; Johnson AD
    Elife; 2021 Apr; 10():. PubMed ID: 33825680
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Influence of serum and polystyrene plate type on stability of Candida albicans biofilms.
    Kipanga PN; Luyten W
    J Microbiol Methods; 2017 Aug; 139():8-11. PubMed ID: 28434823
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Iron-responsive chromatin remodelling and MAPK signalling enhance adhesion in Candida albicans.
    Puri S; Lai WK; Rizzo JM; Buck MJ; Edgerton M
    Mol Microbiol; 2014 Jul; 93(2):291-305. PubMed ID: 24889932
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The role of Candida albicans in root caries biofilms: an RNA-seq analysis.
    Ev LD; Damé-Teixeira N; DO T; Maltz M; Parolo CCF
    J Appl Oral Sci; 2020; 28():e20190578. PubMed ID: 32348446
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Genetic control of Candida albicans biofilm development.
    Finkel JS; Mitchell AP
    Nat Rev Microbiol; 2011 Feb; 9(2):109-18. PubMed ID: 21189476
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Time course global gene expression analysis of an in vivo Candida biofilm.
    Nett JE; Lepak AJ; Marchillo K; Andes DR
    J Infect Dis; 2009 Jul; 200(2):307-13. PubMed ID: 19527170
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Growing Candida albicans Biofilms on Paper Support and Dynamic Conditions.
    Selow ML; Rymovicz AU; Ribas CR; Saad RS; Rosa RT; Rosa EA
    Mycopathologia; 2015 Aug; 180(1-2):27-33. PubMed ID: 25855360
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Nanoimprinting of biomedical polymers reduces candidal physical adhesion.
    Alalwan H; Nile CJ; Rajendran R; McKerlie R; Reynolds P; Gadegaard N; Ramage G
    Nanomedicine; 2018 Apr; 14(3):1045-1049. PubMed ID: 29408656
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Heparin-binding motifs and biofilm formation by Candida albicans.
    Green JV; Orsborn KI; Zhang M; Tan QK; Greis KD; Porollo A; Andes DR; Long Lu J; Hostetter MK
    J Infect Dis; 2013 Nov; 208(10):1695-704. PubMed ID: 23904295
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis.
    Rossignol T; Ding C; Guida A; d'Enfert C; Higgins DG; Butler G
    Eukaryot Cell; 2009 Apr; 8(4):550-9. PubMed ID: 19151323
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered human oral mucosa tissue damage and gingival cell necrosis/apoptosis.
    Rouabhia M; Semlali A; Chandra J; Mukherjee P; Chmielewski W; Ghannoum MA
    Mediators Inflamm; 2012; 2012():398207. PubMed ID: 22665950
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.
    Fox EP; Cowley ES; Nobile CJ; Hartooni N; Newman DK; Johnson AD
    Curr Biol; 2014 Oct; 24(20):2411-6. PubMed ID: 25308076
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Daily Phototherapy with Red Light to Regulate Candida albicans Biofilm Growth.
    Panariello BHD; Garcia BA; Duarte S
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081821
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Portrait of Candida albicans adherence regulators.
    Finkel JS; Xu W; Huang D; Hill EM; Desai JV; Woolford CA; Nett JE; Taff H; Norice CT; Andes DR; Lanni F; Mitchell AP
    PLoS Pathog; 2012 Feb; 8(2):e1002525. PubMed ID: 22359502
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Comparative analysis of Candida biofilm quantitation assays.
    Taff HT; Nett JE; Andes DR
    Med Mycol; 2012 Feb; 50(2):214-8. PubMed ID: 21539503
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A Simple Method for Growth of Candida albicans Biofilms Under Continuous Media Flow and for Recovery of Biofilm Dispersed Cells.
    Uppuluri P
    Methods Mol Biol; 2022; 2542():219-224. PubMed ID: 36008667
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms.
    Böttcher B; Driesch D; Krüger T; Garbe E; Gerwien F; Kniemeyer O; Brakhage AA; Vylkova S
    NPJ Biofilms Microbiomes; 2022 Oct; 8(1):78. PubMed ID: 36224215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.