These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25784494)

  • 21. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet.
    Hong Y; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2016 Sep; 18(35):24164-70. PubMed ID: 27531348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon-nitride 2D nanostructures: thermal conductivity and interfacial thermal conductance with the silica substrate.
    Rajabpour A; Bazrafshan S; Volz S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2507-2512. PubMed ID: 30656341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials.
    Gao J; Yan Q; Tan X; Lv L; Ying J; Zhang X; Yang M; Du S; Wei Q; Xue C; Li H; Yu J; Lin CT; Dai W; Jiang N
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.
    Wang Y; Yang C; Pei QX; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8272-9. PubMed ID: 26959807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics study of interfacial thermal transport between silicene and substrates.
    Zhang J; Hong Y; Tong Z; Xiao Z; Bao H; Yue Y
    Phys Chem Chem Phys; 2015 Oct; 17(37):23704-10. PubMed ID: 26266456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance.
    Liu X; Zhang G; Zhang YW
    Nano Lett; 2016 Aug; 16(8):4954-9. PubMed ID: 27387848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalization mediates heat transport in graphene nanoflakes.
    Han H; Zhang Y; Wang N; Samani MK; Ni Y; Mijbil ZY; Edwards M; Xiong S; Sääskilahti K; Murugesan M; Fu Y; Ye L; Sadeghi H; Bailey S; Kosevich YA; Lambert CJ; Liu J; Volz S
    Nat Commun; 2016 Apr; 7():11281. PubMed ID: 27125636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures.
    Wang Z; Sun F; Liu Z; Zheng L; Wang D; Feng Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16162-16176. PubMed ID: 36924078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal Conductance of Copper-Graphene Interface: A Molecular Simulation.
    Zhu J; Huang S; Xie Z; Guo H; Yang H
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.
    Shtein M; Nadiv R; Buzaglo M; Regev O
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23725-30. PubMed ID: 26445279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low interfacial contact resistance of Al-graphene composites via interface engineering.
    Hahm MG; Nam J; Choi M; Park CD; Cho B; Kazunori S; Kim YA; Kim DY; Endo M; Kim DH; Vajtai R; Ajayan PM; Song SM
    Nanotechnology; 2015 May; 26(21):215603. PubMed ID: 25944839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance.
    Rho H; Lee S; Bae S; Kim TW; Lee DS; Lee HJ; Hwang JY; Jeong T; Kim S; Ha JS; Lee SH
    Sci Rep; 2015 Aug; 5():12710. PubMed ID: 26234425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local strain effect on the thermal transport of graphene nanoribbons: a molecular dynamics investigation.
    Xu L; Zhang X; Zheng Y
    Phys Chem Chem Phys; 2015 May; 17(18):12031-40. PubMed ID: 25872737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals.
    Ermakov VA; Alaferdov AV; Vaz AR; Baranov AV; Moshkalev SA
    Nanotechnology; 2013 Apr; 24(15):155301. PubMed ID: 23519310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal and thermoelectric properties of graphene.
    Xu Y; Li Z; Duan W
    Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.