BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25784542)

  • 1. SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle.
    Koo YD; Choi JW; Kim M; Chae S; Ahn BY; Kim M; Oh BC; Hwang D; Seol JH; Kim YB; Park YJ; Chung SS; Park KS
    Diabetes; 2015 Jul; 64(7):2420-31. PubMed ID: 25784542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle.
    Koo YD; Lee JS; Lee SA; Quaresma PGF; Bhat R; Haynes WG; Park YJ; Kim YB; Chung SS; Park KS
    Metabolism; 2019 Jun; 95():27-35. PubMed ID: 30902749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of SUMO-Specific Protease 2 in Leptin-Induced Fatty Acid Metabolism in White Adipocytes.
    Kim PC; Lee JS; Chung SS; Park KS
    Diabetes Metab J; 2023 May; 47(3):382-393. PubMed ID: 36872063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.
    Coll T; Alvarez-Guardia D; Barroso E; Gómez-Foix AM; Palomer X; Laguna JC; Vázquez-Carrera M
    Endocrinology; 2010 Apr; 151(4):1560-9. PubMed ID: 20185762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO modification selectively regulates transcriptional activity of peroxisome-proliferator-activated receptor γ in C2C12 myotubes.
    Chung SS; Ahn BY; Kim M; Kho JH; Jung HS; Park KS
    Biochem J; 2011 Jan; 433(1):155-61. PubMed ID: 20950277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of energy metabolism by long-chain fatty acids.
    Nakamura MT; Yudell BE; Loor JJ
    Prog Lipid Res; 2014 Jan; 53():124-44. PubMed ID: 24362249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic Small Ubiquitin-Related Modifier (SUMO)-Specific Protease 2 Controls Systemic Metabolism Through SUMOylation-Dependent Regulation of Liver-Adipose Tissue Crosstalk.
    Liu Y; Dou X; Zhou WY; Ding M; Liu L; Du RQ; Guo L; Qian SW; Tang Y; Yang QQ; Pan DN; Li XY; Lu Y; Cheng JK; Tang QQ
    Hepatology; 2021 Oct; 74(4):1864-1883. PubMed ID: 33934381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes.
    Nan J; Lee JS; Lee SA; Lee DS; Park KS; Chung SS
    Mol Cells; 2021 Sep; 44(9):637-646. PubMed ID: 34511469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle.
    Teodoro BG; Sampaio IH; Bomfim LH; Queiroz AL; Silveira LR; Souza AO; Fernandes AM; Eberlin MN; Huang TY; Zheng D; Neufer PD; Cortright RN; Alberici LC
    J Physiol; 2017 Feb; 595(3):677-693. PubMed ID: 27647415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxisome proliferator activated receptor delta (PPARdelta) agonist but not PPARalpha corrects carnitine palmitoyl transferase 2 deficiency in human muscle cells.
    Djouadi F; Aubey F; Schlemmer D; Bastin J
    J Clin Endocrinol Metab; 2005 Mar; 90(3):1791-7. PubMed ID: 15613406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions.
    Chen Y; Li Y; Wang Y; Wen Y; Sun C
    Metabolism; 2009 Dec; 58(12):1694-702. PubMed ID: 19767038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha.
    Pellieux C; Montessuit C; Papageorgiou I; Lerch R
    Cardiovasc Res; 2009 May; 82(2):341-50. PubMed ID: 19131364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice.
    Warfel JD; Bermudez EM; Mendoza TM; Ghosh S; Zhang J; Elks CM; Mynatt R; Vandanmagsar B
    Sci Rep; 2016 Nov; 6():37941. PubMed ID: 27892502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxisome proliferator-activated receptor γ decouples fatty acid uptake from lipid inhibition of insulin signaling in skeletal muscle.
    Hu S; Yao J; Howe AA; Menke BM; Sivitz WI; Spector AA; Norris AW
    Mol Endocrinol; 2012 Jun; 26(6):977-88. PubMed ID: 22474127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha.
    Yoon MJ; Lee GY; Chung JJ; Ahn YH; Hong SH; Kim JB
    Diabetes; 2006 Sep; 55(9):2562-70. PubMed ID: 16936205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Long-Chain Acyl-CoA Synthetase 5 Increases Fatty Acid Oxidation and Free Radical Formation While Attenuating Insulin Signaling in Primary Human Skeletal Myotubes.
    Kwak HB; Woodlief TL; Green TD; Cox JH; Hickner RC; Neufer PD; Cortright RN
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30935113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-induced activation releases peroxisome proliferator-activated receptor beta/delta from its inhibition by palmitate-induced nuclear factor-kappaB in skeletal muscle cells.
    Jové M; Laguna JC; Vázquez-Carrera M
    Biochim Biophys Acta; 2005 May; 1734(1):52-61. PubMed ID: 15866483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular endothelial growth factor B inhibits lipid accumulation in C2C12 myotubes incubated with fatty acids.
    Li LJ; Ma J; Li SB; Chen X; Zhang J
    Growth Factors; 2019 Apr; 37(1-2):76-84. PubMed ID: 31215273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function.
    Zhao L; Pascual F; Bacudio L; Suchanek AL; Young PA; Li LO; Martin SA; Camporez JP; Perry RJ; Shulman GI; Klett EL; Coleman RA
    J Biol Chem; 2019 May; 294(22):8819-8833. PubMed ID: 30975900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new AMPK activator, GSK773, corrects fatty acid oxidation and differentiation defect in CPT2-deficient myotubes.
    Boufroura FZ; Le Bachelier C; Tomkiewicz-Raulet C; Schlemmer D; Benoist JF; Grondin P; Lamotte Y; Mirguet O; Mouillet-Richard S; Bastin J; Djouadi F
    Hum Mol Genet; 2018 Oct; 27(19):3417-3433. PubMed ID: 30007356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.