These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25784855)

  • 1. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases.
    Gardoni F; Bellone C
    Front Cell Neurosci; 2015; 9():25. PubMed ID: 25784855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting VGLUT2 in Mature Dopamine Neurons Decreases Mesoaccumbal Glutamatergic Transmission and Identifies a Role for Glutamate Co-release in Synaptic Plasticity by Increasing Baseline AMPA/NMDA Ratio.
    Papathanou M; Creed M; Dorst MC; Bimpisidis Z; Dumas S; Pettersson H; Bellone C; Silberberg G; Lüscher C; Wallén-Mackenzie Å
    Front Neural Circuits; 2018; 12():64. PubMed ID: 30210305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons.
    Kosillo P; Zhang YF; Threlfell S; Cragg SJ
    Cereb Cortex; 2016 Oct; 26(11):4160-4169. PubMed ID: 27566978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intracerebral administration of NMDA and AMPA on dopamine and glutamate release in the ventral pallidum and on motor behavior.
    Kretschmer BD; Goiny M; Herrera-Marschitz M
    J Neurochem; 2000 May; 74(5):2049-57. PubMed ID: 10800948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic ionotropic glutamate receptors modulate in vivo release and metabolism of striatal dopamine, noradrenaline, and 5-hydroxytryptamine: involvement of both NMDA and AMPA/kainate subtypes.
    Ohta K; Araki N; Shibata M; Komatsumoto S; Shimazu K; Fukuuchi Y
    Neurosci Res; 1994 Nov; 21(1):83-9. PubMed ID: 7535906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems.
    Köles L; Kató E; Hanuska A; Zádori ZS; Al-Khrasani M; Zelles T; Rubini P; Illes P
    Purinergic Signal; 2016 Mar; 12(1):1-24. PubMed ID: 26542977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.
    Thibault D; Giguère N; Loustalot F; Bourque MJ; Ducrot C; El Mestikawy S; Trudeau LÉ
    Brain Struct Funct; 2016 May; 221(4):2093-107. PubMed ID: 25782435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens.
    Shin JH; Adrover MF; Wess J; Alvarez VA
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):8124-9. PubMed ID: 26080439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NR2A-containing NMDA receptors depress glutamatergic synaptic transmission and evoked-dopamine release in the mouse striatum.
    Schotanus SM; Chergui K
    J Neurochem; 2008 Aug; 106(4):1758-65. PubMed ID: 18540994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of striatal dopamine release by glycine transport inhibitors.
    Javitt DC; Hashim A; Sershen H
    Neuropsychopharmacology; 2005 Apr; 30(4):649-56. PubMed ID: 15688094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of excitatory amino acids in the regulation of dopamine synthesis and release in the neostriatum.
    Zigmond MJ; Castro SL; Keefe KA; Abercrombie ED; Sved AF
    Amino Acids; 1998; 14(1-3):57-62. PubMed ID: 9871442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum.
    Horvitz JC
    Behav Brain Res; 2002 Dec; 137(1-2):65-74. PubMed ID: 12445716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
    Avshalumov MV; Rice ME
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11729-34. PubMed ID: 13679582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postsynaptic modulation of AMPA- and NMDA-receptor currents by Group III metabotropic glutamate receptors in rat nucleus accumbens.
    Taverna S; Pennartz CM
    Brain Res; 2003 Jun; 976(1):60-8. PubMed ID: 12763622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of NMDA, AMPA and kainate receptors in mediating glutamate- and 4-AP-induced dopamine and acetylcholine release from rat striatal slices.
    Jin S; Fredholm BB
    Neuropharmacology; 1994 Sep; 33(9):1039-48. PubMed ID: 7838316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study.
    Law-Tho D; Hirsch JC; Crepel F
    Neurosci Res; 1994 Dec; 21(2):151-60. PubMed ID: 7724066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic transmission and modulation in the neostriatum.
    Lovinger DM; Tyler E
    Int Rev Neurobiol; 1996; 39():77-111. PubMed ID: 8894845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neostriatal mechanisms in Parkinson's disease.
    Chase TN; Oh JD; Blanchet PJ
    Neurology; 1998 Aug; 51(2 Suppl 2):S30-5. PubMed ID: 9711978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the mesolimbic dopamine system by glutamate: role of NMDA receptors.
    Kretschmer BD
    J Neurochem; 1999 Aug; 73(2):839-48. PubMed ID: 10428083
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.