These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25784868)

  • 1. Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information.
    Purmann S; Pollmann S
    Front Hum Neurosci; 2015; 9():88. PubMed ID: 25784868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks.
    Roberts KL; Hall DA
    J Cogn Neurosci; 2008 Jun; 20(6):1063-78. PubMed ID: 18211237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurocognitive mechanisms of affective conflict adaptation: An event related fMRI study.
    Kar BR; Nigam R; Pammi VSC; Guleria A; Srinivasan N
    Prog Brain Res; 2019; 247():149-167. PubMed ID: 31196432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ERP evidence for rapid within-trial adaptation of cognitive control during conflict resolution.
    Kałamała P; Ociepka M; Chuderski A
    Cortex; 2020 Oct; 131():151-163. PubMed ID: 32861969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain Functional Mechanisms in Attentional Processing Following Modified Conflict Stroop Task.
    M J; M Z; J K; S A K; H S; N G
    J Biomed Phys Eng; 2020 Aug; 10(4):493-506. PubMed ID: 32802797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Hearing Loss on Cognitive Control in an Auditory Conflict Task: Behavioral and Pupillometry Findings.
    Zekveld AA; van Scheepen JAM; Versfeld NJ; Kramer SE; van Steenbergen H
    J Speech Lang Hear Res; 2020 Jul; 63(7):2483-2492. PubMed ID: 32610026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color-word matching stroop task: separating interference and response conflict.
    Zysset S; Müller K; Lohmann G; von Cramon DY
    Neuroimage; 2001 Jan; 13(1):29-36. PubMed ID: 11133306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection.
    Banich MT; Milham MP; Atchley R; Cohen NJ; Webb A; Wszalek T; Kramer AF; Liang ZP; Wright A; Shenker J; Magin R
    J Cogn Neurosci; 2000 Nov; 12(6):988-1000. PubMed ID: 11177419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional MRI investigation of crossmodal interference in an audiovisual Stroop task.
    Fitzhugh MC; Whitehead PS; Johnson L; Cai JM; Baxter LC; Rogalsky C
    PLoS One; 2019; 14(1):e0210736. PubMed ID: 30645634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural substrates of attentive listening assessed with a novel auditory Stroop task.
    Christensen TA; Lockwood JL; Almryde KR; Plante E
    Front Hum Neurosci; 2011; 4():236. PubMed ID: 21258643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks.
    West R
    Neuropsychologia; 2003; 41(8):1122-35. PubMed ID: 12667546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional selection and the processing of task-irrelevant information: insights from fMRI examinations of the Stroop task.
    Banich MT; Milham MP; Jacobson BL; Webb A; Wszalek T; Cohen NJ; Kramer AF
    Prog Brain Res; 2001; 134():459-70. PubMed ID: 11702561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of frontopolar cortex in the individual differences in conflict adaptation.
    Lee Y; Kim C
    Neurosci Lett; 2019 Jul; 705():212-218. PubMed ID: 31054332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Emotional Conflict Processing by High-Definition Transcranial Direct Current Stimulation (HD-TDCS).
    Kuehne M; Schmidt K; Heinze HJ; Zaehle T
    Front Behav Neurosci; 2019; 13():224. PubMed ID: 31680891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of cognitive style and flexible cognitive control.
    Shin G; Kim C
    Neuroimage; 2015 Jun; 113():78-85. PubMed ID: 25812714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of the essence of conscious conflict: fMRI of sustaining incompatible intentions.
    Gray JR; Bargh JA; Morsella E
    Exp Brain Res; 2013 Sep; 229(3):453-65. PubMed ID: 23727827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural time course of conflict adaptation effects on the Stroop task.
    Larson MJ; Kaufman DA; Perlstein WM
    Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.