These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25784917)

  • 41. An array platform for identification of stress-responsive microRNAs in plants.
    Jia X; Mendu V; Tang G
    Methods Mol Biol; 2010; 639():253-69. PubMed ID: 20387051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing.
    Hou Y; Zhai L; Li X; Xue Y; Wang J; Yang P; Cao C; Li H; Cui Y; Bian S
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29257112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Small RNAs, emerging regulators critical for the development of horticultural traits.
    Chen C; Zeng Z; Liu Z; Xia R
    Hortic Res; 2018; 5():63. PubMed ID: 30245834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders.
    Cong L; Zhao Y; Pogue AI; Lukiw WJ
    Biochemistry (Mosc); 2018 Sep; 83(9):1018-1029. PubMed ID: 30472940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functions of microRNAs and related small RNAs in plants.
    Mallory AC; Vaucheret H
    Nat Genet; 2006 Jun; 38 Suppl():S31-6. PubMed ID: 16736022
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of microRNAs in plants by in situ hybridisation.
    Várallyay E; Havelda Z
    Methods Mol Biol; 2011; 732():9-23. PubMed ID: 21431702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.
    Shriram V; Kumar V; Devarumath RM; Khare TS; Wani SH
    Front Plant Sci; 2016; 7():817. PubMed ID: 27379117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perspectives on microRNAs and Phased Small Interfering RNAs in Maize (
    Zhang Z; Teotia S; Tang J; Tang G
    Plants (Basel); 2019 Jun; 8(6):. PubMed ID: 31212808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The entangled history of animal and plant microRNAs.
    Reis RS
    Funct Integr Genomics; 2017 May; 17(2-3):127-134. PubMed ID: 27549410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update.
    Kumar S; Verma S; Trivedi PK
    Front Plant Sci; 2017; 8():285. PubMed ID: 28344582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs.
    Chávez Montes RA; de Fátima Rosas-Cárdenas F; De Paoli E; Accerbi M; Rymarquis LA; Mahalingam G; Marsch-Martínez N; Meyers BC; Green PJ; de Folter S
    Nat Commun; 2014 Apr; 5():3722. PubMed ID: 24759728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing.
    Wang Z; Qiao Y; Zhang J; Shi W; Zhang J
    Gene; 2017 Jul; 619():61-70. PubMed ID: 28377111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant Small RNAs Responsive to Fungal Pathogen Infection.
    Jin Y; Guo HS
    Methods Mol Biol; 2018; 1848():67-80. PubMed ID: 30182229
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analyzing small and long RNAs in plant development using non-radioactive in situ hybridization.
    Bustos-Sanmamed P; Laffont C; Frugier F; Lelandais-Brière C; Crespi M
    Methods Mol Biol; 2013; 959():303-16. PubMed ID: 23299684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole mount in situ localization of miRNAs and target mRNA transcripts in plants.
    Gautam V; Singh A; Verma S; Singh S; Chatterjee S; Sarkar AK
    3 Biotech; 2019 May; 9(5):193. PubMed ID: 31065493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substrate-Free Untagged Detection of miR393a Using an Ultrasensitive Electrochemical Biosensor.
    Nehra A; Kumar A; Ahlawat S; Kumar V; Singh KP
    ACS Omega; 2022 Feb; 7(6):5176-5189. PubMed ID: 35187333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An efficient method for miRNA detection and localization in crop plants.
    Rosas-Cárdenas Fde F; Escobar-Guzmán R; Cruz-Hernández A; Marsch-Martínez N; de Folter S
    Front Plant Sci; 2015; 6():99. PubMed ID: 25784917
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of miRNAs by Tissue Printing and Dot Blot Hybridization.
    Martínez Núñez M; de Folter S; Rosas-Cárdenas FF
    Methods Mol Biol; 2019; 1932():151-157. PubMed ID: 30701498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emerging Connections between Small RNAs and Phytohormones.
    Li T; Gonzalez N; Inzé D; Dubois M
    Trends Plant Sci; 2020 Sep; 25(9):912-929. PubMed ID: 32381482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.