These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25784922)

  • 21. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?
    Charrier G; Bonhomme M; Lacointe A; Améglio T
    Int J Biometeorol; 2011 Nov; 55(6):763-74. PubMed ID: 21805380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.
    Heide OM
    Tree Physiol; 2003 Sep; 23(13):931-6. PubMed ID: 14532017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Latitudinal clines in bud flush phenology reflect genetic variation in chilling requirements in balsam poplar, Populus balsamifera.
    Thibault E; Soolanayakanahally R; Keller SR
    Am J Bot; 2020 Nov; 107(11):1597-1605. PubMed ID: 33225462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inter-Individual Budburst Variation in
    Malyshev AV; van der Maaten E; Garthen A; Maß D; Schwabe M; Kreyling J
    Front Plant Sci; 2022; 13():853521. PubMed ID: 35498678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stronger Spring Phenological Advance in Future Warming Scenarios for Temperate Species With a Lower Chilling Sensitivity.
    Hu Z; Wang H; Dai J; Ge Q; Lin S
    Front Plant Sci; 2022; 13():830573. PubMed ID: 35665167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of chilling and heat requirements for leaf unfolding in deciduous woody species in temperate and subtropical China.
    Xu Y; Dai J; Ge Q; Wang H; Tao Z
    Int J Biometeorol; 2021 Mar; 65(3):393-403. PubMed ID: 32880063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana.
    Pop EW; Oberbauer SF; Starr G
    Oecologia; 2000 Aug; 124(2):176-184. PubMed ID: 28308177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Winter warming offsets one half of the spring warming effects on leaf unfolding.
    Wang H; Dai J; Peñuelas J; Ge Q; Fu YH; Wu C
    Glob Chang Biol; 2022 Oct; 28(20):6033-6049. PubMed ID: 35899626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement.
    Lange M; Schaber J; Marx A; Jäckel G; Badeck FW; Seppelt R; Doktor D
    Int J Biometeorol; 2016 Nov; 60(11):1711-1726. PubMed ID: 27059366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of Climate Change Impacts on Chilling and Forcing for the Main Fresh Fruit Regions in Portugal.
    Fraga H; Santos JA
    Front Plant Sci; 2021; 12():689121. PubMed ID: 34249059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce.
    Olsen JE; Lee Y; Junttila O
    Front Plant Sci; 2014; 5():691. PubMed ID: 25538722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature and photoperiod drive spring phenology across all species in a temperate forest community.
    Flynn DFB; Wolkovich EM
    New Phytol; 2018 Sep; 219(4):1353-1362. PubMed ID: 29870050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of chilling and heat requirements of cherry trees--a statistical approach.
    Luedeling E; Kunz A; Blanke MM
    Int J Biometeorol; 2013 Sep; 57(5):679-89. PubMed ID: 23053065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Late spring freezes coupled with warming winters alter temperate tree phenology and growth.
    Chamberlain CJ; Wolkovich EM
    New Phytol; 2021 Aug; 231(3):987-995. PubMed ID: 33932291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frost hardening and dehardening potential in temperate trees from winter to budburst.
    Vitra A; Lenz A; Vitasse Y
    New Phytol; 2017 Oct; 216(1):113-123. PubMed ID: 28737248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst.
    Caffarra A; Donnelly A
    Int J Biometeorol; 2011 Sep; 55(5):711-21. PubMed ID: 21113629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn.
    Asante DK; Yakovlev IA; Fossdal CG; Timmerhaus G; Partanen J; Johnsen O
    Plant Physiol Biochem; 2009 Aug; 47(8):681-9. PubMed ID: 19356941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.